708 lines
33 KiB
JavaScript
708 lines
33 KiB
JavaScript
"use strict";
|
||
Object.defineProperty(exports, "__esModule", { value: true });
|
||
exports.bls12_381 = exports.bls12_381_Fr = void 0;
|
||
/**
|
||
* bls12-381 is pairing-friendly Barreto-Lynn-Scott elliptic curve construction allowing to:
|
||
|
||
* Construct zk-SNARKs at the ~120-bit security, as per [Barbulescu-Duquesne 2017](https://hal.science/hal-01534101/file/main.pdf)
|
||
* Efficiently verify N aggregate signatures with 1 pairing and N ec additions:
|
||
the Boneh-Lynn-Shacham signature scheme is orders of magnitude more efficient than Schnorr
|
||
|
||
BLS can mean 2 different things:
|
||
|
||
* Barreto-Lynn-Scott: BLS12, a Pairing Friendly Elliptic Curve
|
||
* Boneh-Lynn-Shacham: A Signature Scheme.
|
||
|
||
### Summary
|
||
|
||
1. BLS Relies on expensive bilinear pairing
|
||
2. Secret Keys: 32 bytes
|
||
3. Public Keys: 48 OR 96 bytes - big-endian x coordinate of point on G1 OR G2 curve
|
||
4. Signatures: 96 OR 48 bytes - big-endian x coordinate of point on G2 OR G1 curve
|
||
5. The 12 stands for the Embedding degree.
|
||
|
||
Modes of operation:
|
||
|
||
* Long signatures: 48-byte keys + 96-byte sigs (G1 keys + G2 sigs).
|
||
* Short signatures: 96-byte keys + 48-byte sigs (G2 keys + G1 sigs).
|
||
|
||
### Formulas
|
||
|
||
- `P = pk x G` - public keys
|
||
- `S = pk x H(m)` - signing, uses hash-to-curve on m
|
||
- `e(P, H(m)) == e(G, S)` - verification using pairings
|
||
- `e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))` - signature aggregation
|
||
|
||
### Curves
|
||
|
||
G1 is ordinary elliptic curve. G2 is extension field curve, think "over complex numbers".
|
||
|
||
- G1: y² = x³ + 4
|
||
- G2: y² = x³ + 4(u + 1) where u = √−1; r-order subgroup of E'(Fp²), M-type twist
|
||
|
||
### Towers
|
||
|
||
Pairing G1 + G2 produces element in Fp₁₂, 12-degree polynomial.
|
||
Fp₁₂ is usually implemented using tower of lower-degree polynomials for speed.
|
||
|
||
- Fp₁₂ = Fp₆² => Fp₂³
|
||
- Fp(u) / (u² - β) where β = -1
|
||
- Fp₂(v) / (v³ - ξ) where ξ = u + 1
|
||
- Fp₆(w) / (w² - γ) where γ = v
|
||
- Fp²[u] = Fp/u²+1
|
||
- Fp⁶[v] = Fp²/v³-1-u
|
||
- Fp¹²[w] = Fp⁶/w²-v
|
||
|
||
### Params
|
||
|
||
* Embedding degree (k): 12
|
||
* Seed is sometimes named x or t
|
||
* t = -15132376222941642752
|
||
* p = (t-1)² * (t⁴-t²+1)/3 + t
|
||
* r = t⁴-t²+1
|
||
* Ate loop size: X
|
||
|
||
To verify curve parameters, see
|
||
[pairing-friendly-curves spec](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-11).
|
||
Basic math is done over finite fields over p.
|
||
More complicated math is done over polynominal extension fields.
|
||
|
||
### Compatibility and notes
|
||
1. It is compatible with Algorand, Chia, Dfinity, Ethereum, Filecoin, ZEC.
|
||
Filecoin uses little endian byte arrays for secret keys - make sure to reverse byte order.
|
||
2. Make sure to correctly select mode: "long signature" or "short signature".
|
||
3. Compatible with specs:
|
||
RFC 9380,
|
||
[cfrg-pairing-friendly-curves-11](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-11),
|
||
[cfrg-bls-signature-05](https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/).
|
||
|
||
*
|
||
* @module
|
||
*/
|
||
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
|
||
const sha2_js_1 = require("@noble/hashes/sha2.js");
|
||
const bls_ts_1 = require("./abstract/bls.js");
|
||
const modular_ts_1 = require("./abstract/modular.js");
|
||
const utils_ts_1 = require("./utils.js");
|
||
// Types
|
||
const hash_to_curve_ts_1 = require("./abstract/hash-to-curve.js");
|
||
const tower_ts_1 = require("./abstract/tower.js");
|
||
const weierstrass_ts_1 = require("./abstract/weierstrass.js");
|
||
// Be friendly to bad ECMAScript parsers by not using bigint literals
|
||
// prettier-ignore
|
||
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4);
|
||
// To verify math:
|
||
// https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-11
|
||
// The BLS parameter x (seed) for BLS12-381. NOTE: it is negative!
|
||
// x = -2^63 - 2^62 - 2^60 - 2^57 - 2^48 - 2^16
|
||
const BLS_X = BigInt('0xd201000000010000');
|
||
// t = x (called differently in different places)
|
||
// const t = -BLS_X;
|
||
const BLS_X_LEN = (0, utils_ts_1.bitLen)(BLS_X);
|
||
// a=0, b=4
|
||
// P is characteristic of field Fp, in which curve calculations are done.
|
||
// p = (t-1)² * (t⁴-t²+1)/3 + t
|
||
// bls12_381_Fp = (t-1n)**2n * (t**4n - t**2n + 1n) / 3n + t
|
||
// r*h is curve order, amount of points on curve,
|
||
// where r is order of prime subgroup and h is cofactor.
|
||
// r = t⁴-t²+1
|
||
// r = (t**4n - t**2n + 1n)
|
||
// cofactor h of G1: (t - 1)²/3
|
||
// cofactorG1 = (t-1n)**2n/3n
|
||
// x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
|
||
// y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
|
||
const bls12_381_CURVE_G1 = {
|
||
p: BigInt('0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab'),
|
||
n: BigInt('0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001'),
|
||
h: BigInt('0x396c8c005555e1568c00aaab0000aaab'),
|
||
a: _0n,
|
||
b: _4n,
|
||
Gx: BigInt('0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb'),
|
||
Gy: BigInt('0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1'),
|
||
};
|
||
// CURVE FIELDS
|
||
exports.bls12_381_Fr = (0, modular_ts_1.Field)(bls12_381_CURVE_G1.n, {
|
||
modFromBytes: true,
|
||
isLE: true,
|
||
});
|
||
const { Fp, Fp2, Fp6, Fp12 } = (0, tower_ts_1.tower12)({
|
||
ORDER: bls12_381_CURVE_G1.p,
|
||
X_LEN: BLS_X_LEN,
|
||
// Finite extension field over irreducible polynominal.
|
||
// Fp(u) / (u² - β) where β = -1
|
||
FP2_NONRESIDUE: [_1n, _1n],
|
||
Fp2mulByB: ({ c0, c1 }) => {
|
||
const t0 = Fp.mul(c0, _4n); // 4 * c0
|
||
const t1 = Fp.mul(c1, _4n); // 4 * c1
|
||
// (T0-T1) + (T0+T1)*i
|
||
return { c0: Fp.sub(t0, t1), c1: Fp.add(t0, t1) };
|
||
},
|
||
Fp12finalExponentiate: (num) => {
|
||
const x = BLS_X;
|
||
// this^(q⁶) / this
|
||
const t0 = Fp12.div(Fp12.frobeniusMap(num, 6), num);
|
||
// t0^(q²) * t0
|
||
const t1 = Fp12.mul(Fp12.frobeniusMap(t0, 2), t0);
|
||
const t2 = Fp12.conjugate(Fp12._cyclotomicExp(t1, x));
|
||
const t3 = Fp12.mul(Fp12.conjugate(Fp12._cyclotomicSquare(t1)), t2);
|
||
const t4 = Fp12.conjugate(Fp12._cyclotomicExp(t3, x));
|
||
const t5 = Fp12.conjugate(Fp12._cyclotomicExp(t4, x));
|
||
const t6 = Fp12.mul(Fp12.conjugate(Fp12._cyclotomicExp(t5, x)), Fp12._cyclotomicSquare(t2));
|
||
const t7 = Fp12.conjugate(Fp12._cyclotomicExp(t6, x));
|
||
const t2_t5_pow_q2 = Fp12.frobeniusMap(Fp12.mul(t2, t5), 2);
|
||
const t4_t1_pow_q3 = Fp12.frobeniusMap(Fp12.mul(t4, t1), 3);
|
||
const t6_t1c_pow_q1 = Fp12.frobeniusMap(Fp12.mul(t6, Fp12.conjugate(t1)), 1);
|
||
const t7_t3c_t1 = Fp12.mul(Fp12.mul(t7, Fp12.conjugate(t3)), t1);
|
||
// (t2 * t5)^(q²) * (t4 * t1)^(q³) * (t6 * t1.conj)^(q^1) * t7 * t3.conj * t1
|
||
return Fp12.mul(Fp12.mul(Fp12.mul(t2_t5_pow_q2, t4_t1_pow_q3), t6_t1c_pow_q1), t7_t3c_t1);
|
||
},
|
||
});
|
||
// GLV endomorphism Ψ(P), for fast cofactor clearing
|
||
const { G2psi, G2psi2 } = (0, tower_ts_1.psiFrobenius)(Fp, Fp2, Fp2.div(Fp2.ONE, Fp2.NONRESIDUE)); // 1/(u+1)
|
||
/**
|
||
* Default hash_to_field / hash-to-curve for BLS.
|
||
* m: 1 for G1, 2 for G2
|
||
* k: target security level in bits
|
||
* hash: any function, e.g. BBS+ uses BLAKE2: see [github](https://github.com/hyperledger/aries-framework-go/issues/2247).
|
||
* Parameter values come from [section 8.8.2 of RFC 9380](https://www.rfc-editor.org/rfc/rfc9380#section-8.8.2).
|
||
*/
|
||
const htfDefaults = Object.freeze({
|
||
DST: 'BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_',
|
||
encodeDST: 'BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_',
|
||
p: Fp.ORDER,
|
||
m: 2,
|
||
k: 128,
|
||
expand: 'xmd',
|
||
hash: sha2_js_1.sha256,
|
||
});
|
||
// a=0, b=4
|
||
// cofactor h of G2
|
||
// (t^8 - 4t^7 + 5t^6 - 4t^4 + 6t^3 - 4t^2 - 4t + 13)/9
|
||
// cofactorG2 = (t**8n - 4n*t**7n + 5n*t**6n - 4n*t**4n + 6n*t**3n - 4n*t**2n - 4n*t+13n)/9n
|
||
// x = 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758*u + 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
|
||
// y = 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582*u + 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
|
||
const bls12_381_CURVE_G2 = {
|
||
p: Fp2.ORDER,
|
||
n: bls12_381_CURVE_G1.n,
|
||
h: BigInt('0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5'),
|
||
a: Fp2.ZERO,
|
||
b: Fp2.fromBigTuple([_4n, _4n]),
|
||
Gx: Fp2.fromBigTuple([
|
||
BigInt('0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8'),
|
||
BigInt('0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e'),
|
||
]),
|
||
Gy: Fp2.fromBigTuple([
|
||
BigInt('0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801'),
|
||
BigInt('0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be'),
|
||
]),
|
||
};
|
||
// Encoding utils
|
||
// Compressed point of infinity
|
||
// Set compressed & point-at-infinity bits
|
||
const COMPZERO = setMask(Fp.toBytes(_0n), { infinity: true, compressed: true });
|
||
function parseMask(bytes) {
|
||
// Copy, so we can remove mask data. It will be removed also later, when Fp.create will call modulo.
|
||
bytes = bytes.slice();
|
||
const mask = bytes[0] & 224;
|
||
const compressed = !!((mask >> 7) & 1); // compression bit (0b1000_0000)
|
||
const infinity = !!((mask >> 6) & 1); // point at infinity bit (0b0100_0000)
|
||
const sort = !!((mask >> 5) & 1); // sort bit (0b0010_0000)
|
||
bytes[0] &= 31; // clear mask (zero first 3 bits)
|
||
return { compressed, infinity, sort, value: bytes };
|
||
}
|
||
function setMask(bytes, mask) {
|
||
if (bytes[0] & 224)
|
||
throw new Error('setMask: non-empty mask');
|
||
if (mask.compressed)
|
||
bytes[0] |= 128;
|
||
if (mask.infinity)
|
||
bytes[0] |= 64;
|
||
if (mask.sort)
|
||
bytes[0] |= 32;
|
||
return bytes;
|
||
}
|
||
function pointG1ToBytes(_c, point, isComp) {
|
||
const { BYTES: L, ORDER: P } = Fp;
|
||
const is0 = point.is0();
|
||
const { x, y } = point.toAffine();
|
||
if (isComp) {
|
||
if (is0)
|
||
return COMPZERO.slice();
|
||
const sort = Boolean((y * _2n) / P);
|
||
return setMask((0, utils_ts_1.numberToBytesBE)(x, L), { compressed: true, sort });
|
||
}
|
||
else {
|
||
if (is0) {
|
||
return (0, utils_ts_1.concatBytes)(Uint8Array.of(0x40), new Uint8Array(2 * L - 1));
|
||
}
|
||
else {
|
||
return (0, utils_ts_1.concatBytes)((0, utils_ts_1.numberToBytesBE)(x, L), (0, utils_ts_1.numberToBytesBE)(y, L));
|
||
}
|
||
}
|
||
}
|
||
function signatureG1ToBytes(point) {
|
||
point.assertValidity();
|
||
const { BYTES: L, ORDER: P } = Fp;
|
||
const { x, y } = point.toAffine();
|
||
if (point.is0())
|
||
return COMPZERO.slice();
|
||
const sort = Boolean((y * _2n) / P);
|
||
return setMask((0, utils_ts_1.numberToBytesBE)(x, L), { compressed: true, sort });
|
||
}
|
||
function pointG1FromBytes(bytes) {
|
||
const { compressed, infinity, sort, value } = parseMask(bytes);
|
||
const { BYTES: L, ORDER: P } = Fp;
|
||
if (value.length === 48 && compressed) {
|
||
const compressedValue = (0, utils_ts_1.bytesToNumberBE)(value);
|
||
// Zero
|
||
const x = Fp.create(compressedValue & (0, utils_ts_1.bitMask)(Fp.BITS));
|
||
if (infinity) {
|
||
if (x !== _0n)
|
||
throw new Error('invalid G1 point: non-empty, at infinity, with compression');
|
||
return { x: _0n, y: _0n };
|
||
}
|
||
const right = Fp.add(Fp.pow(x, _3n), Fp.create(bls12_381_CURVE_G1.b)); // y² = x³ + b
|
||
let y = Fp.sqrt(right);
|
||
if (!y)
|
||
throw new Error('invalid G1 point: compressed point');
|
||
if ((y * _2n) / P !== BigInt(sort))
|
||
y = Fp.neg(y);
|
||
return { x: Fp.create(x), y: Fp.create(y) };
|
||
}
|
||
else if (value.length === 96 && !compressed) {
|
||
// Check if the infinity flag is set
|
||
const x = (0, utils_ts_1.bytesToNumberBE)(value.subarray(0, L));
|
||
const y = (0, utils_ts_1.bytesToNumberBE)(value.subarray(L));
|
||
if (infinity) {
|
||
if (x !== _0n || y !== _0n)
|
||
throw new Error('G1: non-empty point at infinity');
|
||
return exports.bls12_381.G1.Point.ZERO.toAffine();
|
||
}
|
||
return { x: Fp.create(x), y: Fp.create(y) };
|
||
}
|
||
else {
|
||
throw new Error('invalid G1 point: expected 48/96 bytes');
|
||
}
|
||
}
|
||
function signatureG1FromBytes(hex) {
|
||
const { infinity, sort, value } = parseMask((0, utils_ts_1.ensureBytes)('signatureHex', hex, 48));
|
||
const P = Fp.ORDER;
|
||
const Point = exports.bls12_381.G1.Point;
|
||
const compressedValue = (0, utils_ts_1.bytesToNumberBE)(value);
|
||
// Zero
|
||
if (infinity)
|
||
return Point.ZERO;
|
||
const x = Fp.create(compressedValue & (0, utils_ts_1.bitMask)(Fp.BITS));
|
||
const right = Fp.add(Fp.pow(x, _3n), Fp.create(bls12_381_CURVE_G1.b)); // y² = x³ + b
|
||
let y = Fp.sqrt(right);
|
||
if (!y)
|
||
throw new Error('invalid G1 point: compressed');
|
||
const aflag = BigInt(sort);
|
||
if ((y * _2n) / P !== aflag)
|
||
y = Fp.neg(y);
|
||
const point = Point.fromAffine({ x, y });
|
||
point.assertValidity();
|
||
return point;
|
||
}
|
||
function pointG2ToBytes(_c, point, isComp) {
|
||
const { BYTES: L, ORDER: P } = Fp;
|
||
const is0 = point.is0();
|
||
const { x, y } = point.toAffine();
|
||
if (isComp) {
|
||
if (is0)
|
||
return (0, utils_ts_1.concatBytes)(COMPZERO, (0, utils_ts_1.numberToBytesBE)(_0n, L));
|
||
const flag = Boolean(y.c1 === _0n ? (y.c0 * _2n) / P : (y.c1 * _2n) / P);
|
||
return (0, utils_ts_1.concatBytes)(setMask((0, utils_ts_1.numberToBytesBE)(x.c1, L), { compressed: true, sort: flag }), (0, utils_ts_1.numberToBytesBE)(x.c0, L));
|
||
}
|
||
else {
|
||
if (is0)
|
||
return (0, utils_ts_1.concatBytes)(Uint8Array.of(0x40), new Uint8Array(4 * L - 1));
|
||
const { re: x0, im: x1 } = Fp2.reim(x);
|
||
const { re: y0, im: y1 } = Fp2.reim(y);
|
||
return (0, utils_ts_1.concatBytes)((0, utils_ts_1.numberToBytesBE)(x1, L), (0, utils_ts_1.numberToBytesBE)(x0, L), (0, utils_ts_1.numberToBytesBE)(y1, L), (0, utils_ts_1.numberToBytesBE)(y0, L));
|
||
}
|
||
}
|
||
function signatureG2ToBytes(point) {
|
||
point.assertValidity();
|
||
const { BYTES: L } = Fp;
|
||
if (point.is0())
|
||
return (0, utils_ts_1.concatBytes)(COMPZERO, (0, utils_ts_1.numberToBytesBE)(_0n, L));
|
||
const { x, y } = point.toAffine();
|
||
const { re: x0, im: x1 } = Fp2.reim(x);
|
||
const { re: y0, im: y1 } = Fp2.reim(y);
|
||
const tmp = y1 > _0n ? y1 * _2n : y0 * _2n;
|
||
const sort = Boolean((tmp / Fp.ORDER) & _1n);
|
||
const z2 = x0;
|
||
return (0, utils_ts_1.concatBytes)(setMask((0, utils_ts_1.numberToBytesBE)(x1, L), { sort, compressed: true }), (0, utils_ts_1.numberToBytesBE)(z2, L));
|
||
}
|
||
function pointG2FromBytes(bytes) {
|
||
const { BYTES: L, ORDER: P } = Fp;
|
||
const { compressed, infinity, sort, value } = parseMask(bytes);
|
||
if ((!compressed && !infinity && sort) || // 00100000
|
||
(!compressed && infinity && sort) || // 01100000
|
||
(sort && infinity && compressed) // 11100000
|
||
) {
|
||
throw new Error('invalid encoding flag: ' + (bytes[0] & 224));
|
||
}
|
||
const slc = (b, from, to) => (0, utils_ts_1.bytesToNumberBE)(b.slice(from, to));
|
||
if (value.length === 96 && compressed) {
|
||
if (infinity) {
|
||
// check that all bytes are 0
|
||
if (value.reduce((p, c) => (p !== 0 ? c + 1 : c), 0) > 0) {
|
||
throw new Error('invalid G2 point: compressed');
|
||
}
|
||
return { x: Fp2.ZERO, y: Fp2.ZERO };
|
||
}
|
||
const x_1 = slc(value, 0, L);
|
||
const x_0 = slc(value, L, 2 * L);
|
||
const x = Fp2.create({ c0: Fp.create(x_0), c1: Fp.create(x_1) });
|
||
const right = Fp2.add(Fp2.pow(x, _3n), bls12_381_CURVE_G2.b); // y² = x³ + 4 * (u+1) = x³ + b
|
||
let y = Fp2.sqrt(right);
|
||
const Y_bit = y.c1 === _0n ? (y.c0 * _2n) / P : (y.c1 * _2n) / P ? _1n : _0n;
|
||
y = sort && Y_bit > 0 ? y : Fp2.neg(y);
|
||
return { x, y };
|
||
}
|
||
else if (value.length === 192 && !compressed) {
|
||
if (infinity) {
|
||
if (value.reduce((p, c) => (p !== 0 ? c + 1 : c), 0) > 0) {
|
||
throw new Error('invalid G2 point: uncompressed');
|
||
}
|
||
return { x: Fp2.ZERO, y: Fp2.ZERO };
|
||
}
|
||
const x1 = slc(value, 0 * L, 1 * L);
|
||
const x0 = slc(value, 1 * L, 2 * L);
|
||
const y1 = slc(value, 2 * L, 3 * L);
|
||
const y0 = slc(value, 3 * L, 4 * L);
|
||
return { x: Fp2.fromBigTuple([x0, x1]), y: Fp2.fromBigTuple([y0, y1]) };
|
||
}
|
||
else {
|
||
throw new Error('invalid G2 point: expected 96/192 bytes');
|
||
}
|
||
}
|
||
function signatureG2FromBytes(hex) {
|
||
const { ORDER: P } = Fp;
|
||
// TODO: Optimize, it's very slow because of sqrt.
|
||
const { infinity, sort, value } = parseMask((0, utils_ts_1.ensureBytes)('signatureHex', hex));
|
||
const Point = exports.bls12_381.G2.Point;
|
||
const half = value.length / 2;
|
||
if (half !== 48 && half !== 96)
|
||
throw new Error('invalid compressed signature length, expected 96/192 bytes');
|
||
const z1 = (0, utils_ts_1.bytesToNumberBE)(value.slice(0, half));
|
||
const z2 = (0, utils_ts_1.bytesToNumberBE)(value.slice(half));
|
||
// Indicates the infinity point
|
||
if (infinity)
|
||
return Point.ZERO;
|
||
const x1 = Fp.create(z1 & (0, utils_ts_1.bitMask)(Fp.BITS));
|
||
const x2 = Fp.create(z2);
|
||
const x = Fp2.create({ c0: x2, c1: x1 });
|
||
const y2 = Fp2.add(Fp2.pow(x, _3n), bls12_381_CURVE_G2.b); // y² = x³ + 4
|
||
// The slow part
|
||
let y = Fp2.sqrt(y2);
|
||
if (!y)
|
||
throw new Error('Failed to find a square root');
|
||
// Choose the y whose leftmost bit of the imaginary part is equal to the a_flag1
|
||
// If y1 happens to be zero, then use the bit of y0
|
||
const { re: y0, im: y1 } = Fp2.reim(y);
|
||
const aflag1 = BigInt(sort);
|
||
const isGreater = y1 > _0n && (y1 * _2n) / P !== aflag1;
|
||
const is0 = y1 === _0n && (y0 * _2n) / P !== aflag1;
|
||
if (isGreater || is0)
|
||
y = Fp2.neg(y);
|
||
const point = Point.fromAffine({ x, y });
|
||
point.assertValidity();
|
||
return point;
|
||
}
|
||
/**
|
||
* bls12-381 pairing-friendly curve.
|
||
* @example
|
||
* import { bls12_381 as bls } from '@noble/curves/bls12-381';
|
||
* // G1 keys, G2 signatures
|
||
* const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
|
||
* const message = '64726e3da8';
|
||
* const publicKey = bls.getPublicKey(privateKey);
|
||
* const signature = bls.sign(message, privateKey);
|
||
* const isValid = bls.verify(signature, message, publicKey);
|
||
*/
|
||
exports.bls12_381 = (0, bls_ts_1.bls)({
|
||
// Fields
|
||
fields: {
|
||
Fp,
|
||
Fp2,
|
||
Fp6,
|
||
Fp12,
|
||
Fr: exports.bls12_381_Fr,
|
||
},
|
||
// G1: y² = x³ + 4
|
||
G1: {
|
||
...bls12_381_CURVE_G1,
|
||
Fp,
|
||
htfDefaults: { ...htfDefaults, m: 1, DST: 'BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_' },
|
||
wrapPrivateKey: true,
|
||
allowInfinityPoint: true,
|
||
// Checks is the point resides in prime-order subgroup.
|
||
// point.isTorsionFree() should return true for valid points
|
||
// It returns false for shitty points.
|
||
// https://eprint.iacr.org/2021/1130.pdf
|
||
isTorsionFree: (c, point) => {
|
||
// GLV endomorphism ψ(P)
|
||
const beta = BigInt('0x5f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe');
|
||
const phi = new c(Fp.mul(point.X, beta), point.Y, point.Z);
|
||
// TODO: unroll
|
||
const xP = point.multiplyUnsafe(BLS_X).negate(); // [x]P
|
||
const u2P = xP.multiplyUnsafe(BLS_X); // [u2]P
|
||
return u2P.equals(phi);
|
||
},
|
||
// Clear cofactor of G1
|
||
// https://eprint.iacr.org/2019/403
|
||
clearCofactor: (_c, point) => {
|
||
// return this.multiplyUnsafe(CURVE.h);
|
||
return point.multiplyUnsafe(BLS_X).add(point); // x*P + P
|
||
},
|
||
mapToCurve: mapToG1,
|
||
fromBytes: pointG1FromBytes,
|
||
toBytes: pointG1ToBytes,
|
||
ShortSignature: {
|
||
fromBytes(bytes) {
|
||
(0, utils_ts_1.abytes)(bytes);
|
||
return signatureG1FromBytes(bytes);
|
||
},
|
||
fromHex(hex) {
|
||
return signatureG1FromBytes(hex);
|
||
},
|
||
toBytes(point) {
|
||
return signatureG1ToBytes(point);
|
||
},
|
||
toRawBytes(point) {
|
||
return signatureG1ToBytes(point);
|
||
},
|
||
toHex(point) {
|
||
return (0, utils_ts_1.bytesToHex)(signatureG1ToBytes(point));
|
||
},
|
||
},
|
||
},
|
||
G2: {
|
||
...bls12_381_CURVE_G2,
|
||
Fp: Fp2,
|
||
// https://datatracker.ietf.org/doc/html/rfc9380#name-clearing-the-cofactor
|
||
// https://datatracker.ietf.org/doc/html/rfc9380#name-cofactor-clearing-for-bls12
|
||
hEff: BigInt('0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551'),
|
||
htfDefaults: { ...htfDefaults },
|
||
wrapPrivateKey: true,
|
||
allowInfinityPoint: true,
|
||
mapToCurve: mapToG2,
|
||
// Checks is the point resides in prime-order subgroup.
|
||
// point.isTorsionFree() should return true for valid points
|
||
// It returns false for shitty points.
|
||
// https://eprint.iacr.org/2021/1130.pdf
|
||
// Older version: https://eprint.iacr.org/2019/814.pdf
|
||
isTorsionFree: (c, P) => {
|
||
return P.multiplyUnsafe(BLS_X).negate().equals(G2psi(c, P)); // ψ(P) == [u](P)
|
||
},
|
||
// Maps the point into the prime-order subgroup G2.
|
||
// clear_cofactor_bls12381_g2 from RFC 9380.
|
||
// https://eprint.iacr.org/2017/419.pdf
|
||
// prettier-ignore
|
||
clearCofactor: (c, P) => {
|
||
const x = BLS_X;
|
||
let t1 = P.multiplyUnsafe(x).negate(); // [-x]P
|
||
let t2 = G2psi(c, P); // Ψ(P)
|
||
let t3 = P.double(); // 2P
|
||
t3 = G2psi2(c, t3); // Ψ²(2P)
|
||
t3 = t3.subtract(t2); // Ψ²(2P) - Ψ(P)
|
||
t2 = t1.add(t2); // [-x]P + Ψ(P)
|
||
t2 = t2.multiplyUnsafe(x).negate(); // [x²]P - [x]Ψ(P)
|
||
t3 = t3.add(t2); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P)
|
||
t3 = t3.subtract(t1); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P) + [x]P
|
||
const Q = t3.subtract(P); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P) + [x]P - 1P
|
||
return Q; // [x²-x-1]P + [x-1]Ψ(P) + Ψ²(2P)
|
||
},
|
||
fromBytes: pointG2FromBytes,
|
||
toBytes: pointG2ToBytes,
|
||
Signature: {
|
||
fromBytes(bytes) {
|
||
(0, utils_ts_1.abytes)(bytes);
|
||
return signatureG2FromBytes(bytes);
|
||
},
|
||
fromHex(hex) {
|
||
return signatureG2FromBytes(hex);
|
||
},
|
||
toBytes(point) {
|
||
return signatureG2ToBytes(point);
|
||
},
|
||
toRawBytes(point) {
|
||
return signatureG2ToBytes(point);
|
||
},
|
||
toHex(point) {
|
||
return (0, utils_ts_1.bytesToHex)(signatureG2ToBytes(point));
|
||
},
|
||
},
|
||
},
|
||
params: {
|
||
ateLoopSize: BLS_X, // The BLS parameter x for BLS12-381
|
||
r: bls12_381_CURVE_G1.n, // order; z⁴ − z² + 1; CURVE.n from other curves
|
||
xNegative: true,
|
||
twistType: 'multiplicative',
|
||
},
|
||
htfDefaults,
|
||
hash: sha2_js_1.sha256,
|
||
});
|
||
// 3-isogeny map from E' to E https://www.rfc-editor.org/rfc/rfc9380#appendix-E.3
|
||
const isogenyMapG2 = (0, hash_to_curve_ts_1.isogenyMap)(Fp2, [
|
||
// xNum
|
||
[
|
||
[
|
||
'0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6',
|
||
'0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6',
|
||
],
|
||
[
|
||
'0x0',
|
||
'0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71a',
|
||
],
|
||
[
|
||
'0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71e',
|
||
'0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38d',
|
||
],
|
||
[
|
||
'0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d6108f142b85757098e38d0f671c7188e2aaaaaaaa5ed1',
|
||
'0x0',
|
||
],
|
||
],
|
||
// xDen
|
||
[
|
||
[
|
||
'0x0',
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa63',
|
||
],
|
||
[
|
||
'0xc',
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9f',
|
||
],
|
||
['0x1', '0x0'], // LAST 1
|
||
],
|
||
// yNum
|
||
[
|
||
[
|
||
'0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706',
|
||
'0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706',
|
||
],
|
||
[
|
||
'0x0',
|
||
'0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97be',
|
||
],
|
||
[
|
||
'0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71c',
|
||
'0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38f',
|
||
],
|
||
[
|
||
'0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977c69aa274524e79097a56dc4bd9e1b371c71c718b10',
|
||
'0x0',
|
||
],
|
||
],
|
||
// yDen
|
||
[
|
||
[
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb',
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb',
|
||
],
|
||
[
|
||
'0x0',
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3',
|
||
],
|
||
[
|
||
'0x12',
|
||
'0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99',
|
||
],
|
||
['0x1', '0x0'], // LAST 1
|
||
],
|
||
].map((i) => i.map((pair) => Fp2.fromBigTuple(pair.map(BigInt)))));
|
||
// 11-isogeny map from E' to E
|
||
const isogenyMapG1 = (0, hash_to_curve_ts_1.isogenyMap)(Fp, [
|
||
// xNum
|
||
[
|
||
'0x11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7',
|
||
'0x17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e33c70d1e86b4838f2a6f318c356e834eef1b3cb83bb',
|
||
'0xd54005db97678ec1d1048c5d10a9a1bce032473295983e56878e501ec68e25c958c3e3d2a09729fe0179f9dac9edcb0',
|
||
'0x1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b33289f1b330835336e25ce3107193c5b388641d9b6861',
|
||
'0xe99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb65982fac18985a286f301e77c451154ce9ac8895d9',
|
||
'0x1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab9097e68f90a0870d2dcae73d19cd13c1c66f652983',
|
||
'0xd6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e218f9c86b2a8da25128c1052ecaddd7f225a139ed84',
|
||
'0x17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c62ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e',
|
||
'0x80d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c928c5d1de4fa295f296b74e956d71986a8497e317',
|
||
'0x169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314baf4bb1b7fa3190b2edc0327797f241067be390c9e',
|
||
'0x10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af36003b14866f69b771f8c285decca67df3f1605fb7b',
|
||
'0x6e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229',
|
||
],
|
||
// xDen
|
||
[
|
||
'0x8ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c9588617fc8ac62b558d681be343df8993cf9fa40d21b1c',
|
||
'0x12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2588c48bf5713daa8846cb026e9e5c8276ec82b3bff',
|
||
'0xb2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e00b11aceacd6a3d0967c94fedcfcc239ba5cb83e19',
|
||
'0x3425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8abc28d6fd04976d5243eecf5c4130de8938dc62cd8',
|
||
'0x13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44e833b306da9bd29ba81f35781d539d395b3532a21e',
|
||
'0xe7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bcef24b8982f7400d24bc4228f11c02df9a29f6304a5',
|
||
'0x772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073062aede9cea73b3538f0de06cec2574496ee84a3a',
|
||
'0x14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e',
|
||
'0xa10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da67f39883503826692abba43704776ec3a79a1d641',
|
||
'0x95fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533978f31c1593174e4b4b7865002d6384d168ecdd0a',
|
||
'0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001', // LAST 1
|
||
],
|
||
// yNum
|
||
[
|
||
'0x90d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6c956543d3cd0c7aee9b3ba3c2be9845719707bb33',
|
||
'0x134996a104ee5811d51036d776fb46831223e96c254f383d0f906343eb67ad34d6c56711962fa8bfe097e75a2e41c696',
|
||
'0xcc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b91400da7d26d521628b00523b8dfe240c72de1f6',
|
||
'0x1f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3ec03251cf9de405aba9ec61deca6355c77b0e5f4cb',
|
||
'0x8cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd221351adc2ee7f8dc099040a841b6daecf2e8fedb',
|
||
'0x16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c3d3ad5544e203f6326c95a807299b23ab13633a5f0',
|
||
'0x4ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413c4d634f3747a87ac2460f415ec961f8855fe9d6f2',
|
||
'0x987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da6c26c842642f64550fedfe935a15e4ca31870fb29',
|
||
'0x9fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6a1f20cabe69d65201c78607a360370e577bdba587',
|
||
'0xe1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30',
|
||
'0x19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183e416389e61031bf3a5cce3fbafce813711ad011c132',
|
||
'0x18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bfe7f911f643249d9cdf41b44d606ce07c8a4d0074d8e',
|
||
'0xb182cac101b9399d155096004f53f447aa7b12a3426b08ec02710e807b4633f06c851c1919211f20d4c04f00b971ef8',
|
||
'0x245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e6632d3c40659cc6cf90ad1c232a6442d9d3f5db980133',
|
||
'0x5c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f5d396a7ce46ba1049b6579afb7866b1e715475224b',
|
||
'0x15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add4fa95af01b2b665027efec01c7704b456be69c8b604',
|
||
],
|
||
// yDen
|
||
[
|
||
'0x16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec3232b5be72e7a07f3688ef60c206d01479253b03663c1',
|
||
'0x1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a10356f453e01f78a4260763529e3532f6102c2e49a03d',
|
||
'0x58df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5dd279cd2eca6757cd636f96f891e2538b53dbf67f2',
|
||
'0x16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da489e726af41727364f2c28297ada8d26d98445f5416',
|
||
'0xbe0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0fc9dec916a20b15dc0fd2ededda39142311a5001d',
|
||
'0x8d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac',
|
||
'0x166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365bc400a0051d5fa9c01a58b1fb93d1a1399126a775c',
|
||
'0x16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34fd206357132b920f5b00801dee460ee415a15812ed9',
|
||
'0x1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc5750c4bf39b4852cfe2f7bb9248836b233d9d55535d4a',
|
||
'0x167a55cda70a6e1cea820597d94a84903216f763e13d87bb5308592e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55',
|
||
'0x4d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b36e636a5c871a5c29f4f83060400f8b49cba8f6aa8',
|
||
'0xaccbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a88cea7913516f968986f7ebbea9684b529e2561092',
|
||
'0xad6b9514c767fe3c3613144b45f1496543346d98adf02267d5ceef9a00d9b8693000763e3b90ac11e99b138573345cc',
|
||
'0x2660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748df27942480e420517bd8714cc80d1fadc1326ed06f7',
|
||
'0xe0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efcd6356caa205ca2f570f13497804415473a1d634b8f',
|
||
'0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001', // LAST 1
|
||
],
|
||
].map((i) => i.map((j) => BigInt(j))));
|
||
// Optimized SWU Map - Fp to G1
|
||
const G1_SWU = (0, weierstrass_ts_1.mapToCurveSimpleSWU)(Fp, {
|
||
A: Fp.create(BigInt('0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d')),
|
||
B: Fp.create(BigInt('0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0')),
|
||
Z: Fp.create(BigInt(11)),
|
||
});
|
||
// SWU Map - Fp2 to G2': y² = x³ + 240i * x + 1012 + 1012i
|
||
const G2_SWU = (0, weierstrass_ts_1.mapToCurveSimpleSWU)(Fp2, {
|
||
A: Fp2.create({ c0: Fp.create(_0n), c1: Fp.create(BigInt(240)) }), // A' = 240 * I
|
||
B: Fp2.create({ c0: Fp.create(BigInt(1012)), c1: Fp.create(BigInt(1012)) }), // B' = 1012 * (1 + I)
|
||
Z: Fp2.create({ c0: Fp.create(BigInt(-2)), c1: Fp.create(BigInt(-1)) }), // Z: -(2 + I)
|
||
});
|
||
function mapToG1(scalars) {
|
||
const { x, y } = G1_SWU(Fp.create(scalars[0]));
|
||
return isogenyMapG1(x, y);
|
||
}
|
||
function mapToG2(scalars) {
|
||
const { x, y } = G2_SWU(Fp2.fromBigTuple(scalars));
|
||
return isogenyMapG2(x, y);
|
||
}
|
||
//# sourceMappingURL=bls12-381.js.map
|