Files
lcbp3.np-dms.work/frontend/node_modules/@noble/curves/abstract/fft.js
2025-09-21 20:29:15 +07:00

438 lines
16 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.FFTCore = void 0;
exports.isPowerOfTwo = isPowerOfTwo;
exports.nextPowerOfTwo = nextPowerOfTwo;
exports.reverseBits = reverseBits;
exports.log2 = log2;
exports.bitReversalInplace = bitReversalInplace;
exports.bitReversalPermutation = bitReversalPermutation;
exports.rootsOfUnity = rootsOfUnity;
exports.FFT = FFT;
exports.poly = poly;
function checkU32(n) {
// 0xff_ff_ff_ff
if (!Number.isSafeInteger(n) || n < 0 || n > 0xffffffff)
throw new Error('wrong u32 integer:' + n);
return n;
}
/** Checks if integer is in form of `1 << X` */
function isPowerOfTwo(x) {
checkU32(x);
return (x & (x - 1)) === 0 && x !== 0;
}
function nextPowerOfTwo(n) {
checkU32(n);
if (n <= 1)
return 1;
return (1 << (log2(n - 1) + 1)) >>> 0;
}
function reverseBits(n, bits) {
checkU32(n);
let reversed = 0;
for (let i = 0; i < bits; i++, n >>>= 1)
reversed = (reversed << 1) | (n & 1);
return reversed;
}
/** Similar to `bitLen(x)-1` but much faster for small integers, like indices */
function log2(n) {
checkU32(n);
return 31 - Math.clz32(n);
}
/**
* Moves lowest bit to highest position, which at first step splits
* array on even and odd indices, then it applied again to each part,
* which is core of fft
*/
function bitReversalInplace(values) {
const n = values.length;
if (n < 2 || !isPowerOfTwo(n))
throw new Error('n must be a power of 2 and greater than 1. Got ' + n);
const bits = log2(n);
for (let i = 0; i < n; i++) {
const j = reverseBits(i, bits);
if (i < j) {
const tmp = values[i];
values[i] = values[j];
values[j] = tmp;
}
}
return values;
}
function bitReversalPermutation(values) {
return bitReversalInplace(values.slice());
}
const _1n = /** @__PURE__ */ BigInt(1);
function findGenerator(field) {
let G = BigInt(2);
for (; field.eql(field.pow(G, field.ORDER >> _1n), field.ONE); G++)
;
return G;
}
/** We limit roots up to 2**31, which is a lot: 2-billion polynomimal should be rare. */
function rootsOfUnity(field, generator) {
// Factor field.ORDER-1 as oddFactor * 2^powerOfTwo
let oddFactor = field.ORDER - _1n;
let powerOfTwo = 0;
for (; (oddFactor & _1n) !== _1n; powerOfTwo++, oddFactor >>= _1n)
;
// Find non quadratic residue
let G = generator !== undefined ? BigInt(generator) : findGenerator(field);
// Powers of generator
const omegas = new Array(powerOfTwo + 1);
omegas[powerOfTwo] = field.pow(G, oddFactor);
for (let i = powerOfTwo; i > 0; i--)
omegas[i - 1] = field.sqr(omegas[i]);
// Compute all roots of unity for powers up to maxPower
const rootsCache = [];
const checkBits = (bits) => {
checkU32(bits);
if (bits > 31 || bits > powerOfTwo)
throw new Error('rootsOfUnity: wrong bits ' + bits + ' powerOfTwo=' + powerOfTwo);
return bits;
};
const precomputeRoots = (maxPower) => {
checkBits(maxPower);
for (let power = maxPower; power >= 0; power--) {
if (rootsCache[power])
continue; // Skip if we've already computed roots for this power
const rootsAtPower = [];
for (let j = 0, cur = field.ONE; j < 2 ** power; j++, cur = field.mul(cur, omegas[power]))
rootsAtPower.push(cur);
rootsCache[power] = rootsAtPower;
}
return rootsCache[maxPower];
};
const brpCache = new Map();
const inverseCache = new Map();
// NOTE: we use bits instead of power, because power = 2**bits,
// but power is not neccesary isPowerOfTwo(power)!
return {
roots: (bits) => {
const b = checkBits(bits);
return precomputeRoots(b);
},
brp(bits) {
const b = checkBits(bits);
if (brpCache.has(b))
return brpCache.get(b);
else {
const res = bitReversalPermutation(this.roots(b));
brpCache.set(b, res);
return res;
}
},
inverse(bits) {
const b = checkBits(bits);
if (inverseCache.has(b))
return inverseCache.get(b);
else {
const res = field.invertBatch(this.roots(b));
inverseCache.set(b, res);
return res;
}
},
omega: (bits) => omegas[checkBits(bits)],
clear: () => {
rootsCache.splice(0, rootsCache.length);
brpCache.clear();
},
};
}
/**
* Constructs different flavors of FFT. radix2 implementation of low level mutating API. Flavors:
*
* - DIT (Decimation-in-Time): Bottom-Up (leaves -> root), Cool-Turkey
* - DIF (Decimation-in-Frequency): Top-Down (root -> leaves), GentlemanSande
*
* DIT takes brp input, returns natural output.
* DIF takes natural input, returns brp output.
*
* The output is actually identical. Time / frequence distinction is not meaningful
* for Polynomial multiplication in fields.
* Which means if protocol supports/needs brp output/inputs, then we can skip this step.
*
* Cyclic NTT: Rq = Zq[x]/(x^n-1). butterfly_DIT+loop_DIT OR butterfly_DIF+loop_DIT, roots are omega
* Negacyclic NTT: Rq = Zq[x]/(x^n+1). butterfly_DIT+loop_DIF, at least for mlkem / mldsa
*/
const FFTCore = (F, coreOpts) => {
const { N, roots, dit, invertButterflies = false, skipStages = 0, brp = true } = coreOpts;
const bits = log2(N);
if (!isPowerOfTwo(N))
throw new Error('FFT: Polynomial size should be power of two');
const isDit = dit !== invertButterflies;
isDit;
return (values) => {
if (values.length !== N)
throw new Error('FFT: wrong Polynomial length');
if (dit && brp)
bitReversalInplace(values);
for (let i = 0, g = 1; i < bits - skipStages; i++) {
// For each stage s (sub-FFT length m = 2^s)
const s = dit ? i + 1 + skipStages : bits - i;
const m = 1 << s;
const m2 = m >> 1;
const stride = N >> s;
// Loop over each subarray of length m
for (let k = 0; k < N; k += m) {
// Loop over each butterfly within the subarray
for (let j = 0, grp = g++; j < m2; j++) {
const rootPos = invertButterflies ? (dit ? N - grp : grp) : j * stride;
const i0 = k + j;
const i1 = k + j + m2;
const omega = roots[rootPos];
const b = values[i1];
const a = values[i0];
// Inlining gives us 10% perf in kyber vs functions
if (isDit) {
const t = F.mul(b, omega); // Standard DIT butterfly
values[i0] = F.add(a, t);
values[i1] = F.sub(a, t);
}
else if (invertButterflies) {
values[i0] = F.add(b, a); // DIT loop + inverted butterflies (Kyber decode)
values[i1] = F.mul(F.sub(b, a), omega);
}
else {
values[i0] = F.add(a, b); // Standard DIF butterfly
values[i1] = F.mul(F.sub(a, b), omega);
}
}
}
}
if (!dit && brp)
bitReversalInplace(values);
return values;
};
};
exports.FFTCore = FFTCore;
/**
* NTT aka FFT over finite field (NOT over complex numbers).
* Naming mirrors other libraries.
*/
function FFT(roots, opts) {
const getLoop = (N, roots, brpInput = false, brpOutput = false) => {
if (brpInput && brpOutput) {
// we cannot optimize this case, but lets support it anyway
return (values) => (0, exports.FFTCore)(opts, { N, roots, dit: false, brp: false })(bitReversalInplace(values));
}
if (brpInput)
return (0, exports.FFTCore)(opts, { N, roots, dit: true, brp: false });
if (brpOutput)
return (0, exports.FFTCore)(opts, { N, roots, dit: false, brp: false });
return (0, exports.FFTCore)(opts, { N, roots, dit: true, brp: true }); // all natural
};
return {
direct(values, brpInput = false, brpOutput = false) {
const N = values.length;
if (!isPowerOfTwo(N))
throw new Error('FFT: Polynomial size should be power of two');
const bits = log2(N);
return getLoop(N, roots.roots(bits), brpInput, brpOutput)(values.slice());
},
inverse(values, brpInput = false, brpOutput = false) {
const N = values.length;
const bits = log2(N);
const res = getLoop(N, roots.inverse(bits), brpInput, brpOutput)(values.slice());
const ivm = opts.inv(BigInt(values.length)); // scale
// we can get brp output if we use dif instead of dit!
for (let i = 0; i < res.length; i++)
res[i] = opts.mul(res[i], ivm);
// Allows to re-use non-inverted roots, but is VERY fragile
// return [res[0]].concat(res.slice(1).reverse());
// inverse calculated as pow(-1), which transforms into ω^{-kn} (-> reverses indices)
return res;
},
};
}
function poly(field, roots, create, fft, length) {
const F = field;
const _create = create ||
((len, elm) => new Array(len).fill(elm ?? F.ZERO));
const isPoly = (x) => Array.isArray(x) || ArrayBuffer.isView(x);
const checkLength = (...lst) => {
if (!lst.length)
return 0;
for (const i of lst)
if (!isPoly(i))
throw new Error('poly: not polynomial: ' + i);
const L = lst[0].length;
for (let i = 1; i < lst.length; i++)
if (lst[i].length !== L)
throw new Error(`poly: mismatched lengths ${L} vs ${lst[i].length}`);
if (length !== undefined && L !== length)
throw new Error(`poly: expected fixed length ${length}, got ${L}`);
return L;
};
function findOmegaIndex(x, n, brp = false) {
const bits = log2(n);
const omega = brp ? roots.brp(bits) : roots.roots(bits);
for (let i = 0; i < n; i++)
if (F.eql(x, omega[i]))
return i;
return -1;
}
// TODO: mutating versions for mlkem/mldsa
return {
roots,
create: _create,
length,
extend: (a, len) => {
checkLength(a);
const out = _create(len, F.ZERO);
for (let i = 0; i < a.length; i++)
out[i] = a[i];
return out;
},
degree: (a) => {
checkLength(a);
for (let i = a.length - 1; i >= 0; i--)
if (!F.is0(a[i]))
return i;
return -1;
},
add: (a, b) => {
const len = checkLength(a, b);
const out = _create(len);
for (let i = 0; i < len; i++)
out[i] = F.add(a[i], b[i]);
return out;
},
sub: (a, b) => {
const len = checkLength(a, b);
const out = _create(len);
for (let i = 0; i < len; i++)
out[i] = F.sub(a[i], b[i]);
return out;
},
dot: (a, b) => {
const len = checkLength(a, b);
const out = _create(len);
for (let i = 0; i < len; i++)
out[i] = F.mul(a[i], b[i]);
return out;
},
mul: (a, b) => {
if (isPoly(b)) {
const len = checkLength(a, b);
if (fft) {
const A = fft.direct(a, false, true);
const B = fft.direct(b, false, true);
for (let i = 0; i < A.length; i++)
A[i] = F.mul(A[i], B[i]);
return fft.inverse(A, true, false);
}
else {
// NOTE: this is quadratic and mostly for compat tests with FFT
const res = _create(len);
for (let i = 0; i < len; i++) {
for (let j = 0; j < len; j++) {
const k = (i + j) % len; // wrap mod length
res[k] = F.add(res[k], F.mul(a[i], b[j]));
}
}
return res;
}
}
else {
const out = _create(checkLength(a));
for (let i = 0; i < out.length; i++)
out[i] = F.mul(a[i], b);
return out;
}
},
convolve(a, b) {
const len = nextPowerOfTwo(a.length + b.length - 1);
return this.mul(this.extend(a, len), this.extend(b, len));
},
shift(p, factor) {
const out = _create(checkLength(p));
out[0] = p[0];
for (let i = 1, power = F.ONE; i < p.length; i++) {
power = F.mul(power, factor);
out[i] = F.mul(p[i], power);
}
return out;
},
clone: (a) => {
checkLength(a);
const out = _create(a.length);
for (let i = 0; i < a.length; i++)
out[i] = a[i];
return out;
},
eval: (a, basis) => {
checkLength(a);
let acc = F.ZERO;
for (let i = 0; i < a.length; i++)
acc = F.add(acc, F.mul(a[i], basis[i]));
return acc;
},
monomial: {
basis: (x, n) => {
const out = _create(n);
let pow = F.ONE;
for (let i = 0; i < n; i++) {
out[i] = pow;
pow = F.mul(pow, x);
}
return out;
},
eval: (a, x) => {
checkLength(a);
// Same as eval(a, monomialBasis(x, a.length)), but it is faster this way
let acc = F.ZERO;
for (let i = a.length - 1; i >= 0; i--)
acc = F.add(F.mul(acc, x), a[i]);
return acc;
},
},
lagrange: {
basis: (x, n, brp = false, weights) => {
const bits = log2(n);
const cache = weights || brp ? roots.brp(bits) : roots.roots(bits); // [ω⁰, ω¹, ..., ωⁿ⁻¹]
const out = _create(n);
// Fast Kronecker-δ shortcut
const idx = findOmegaIndex(x, n, brp);
if (idx !== -1) {
out[idx] = F.ONE;
return out;
}
const tm = F.pow(x, BigInt(n));
const c = F.mul(F.sub(tm, F.ONE), F.inv(BigInt(n))); // c = (xⁿ - 1)/n
const denom = _create(n);
for (let i = 0; i < n; i++)
denom[i] = F.sub(x, cache[i]);
const inv = F.invertBatch(denom);
for (let i = 0; i < n; i++)
out[i] = F.mul(c, F.mul(cache[i], inv[i]));
return out;
},
eval(a, x, brp = false) {
checkLength(a);
const idx = findOmegaIndex(x, a.length, brp);
if (idx !== -1)
return a[idx]; // fast path
const L = this.basis(x, a.length, brp); // Lᵢ(x)
let acc = F.ZERO;
for (let i = 0; i < a.length; i++)
if (!F.is0(a[i]))
acc = F.add(acc, F.mul(a[i], L[i]));
return acc;
},
},
vanishing(roots) {
checkLength(roots);
const out = _create(roots.length + 1, F.ZERO);
out[0] = F.ONE;
for (const r of roots) {
const neg = F.neg(r);
for (let j = out.length - 1; j > 0; j--)
out[j] = F.add(F.mul(out[j], neg), out[j - 1]);
out[0] = F.mul(out[0], neg);
}
return out;
},
};
}
//# sourceMappingURL=fft.js.map