Files
lcbp3.np-dms.work/frontend/node_modules/@noble/curves/abstract/fft.d.ts
2025-09-21 20:29:15 +07:00

122 lines
5.0 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/**
* Experimental implementation of NTT / FFT (Fast Fourier Transform) over finite fields.
* API may change at any time. The code has not been audited. Feature requests are welcome.
* @module
*/
import type { IField } from './modular.ts';
export interface MutableArrayLike<T> {
[index: number]: T;
length: number;
slice(start?: number, end?: number): this;
[Symbol.iterator](): Iterator<T>;
}
/** Checks if integer is in form of `1 << X` */
export declare function isPowerOfTwo(x: number): boolean;
export declare function nextPowerOfTwo(n: number): number;
export declare function reverseBits(n: number, bits: number): number;
/** Similar to `bitLen(x)-1` but much faster for small integers, like indices */
export declare function log2(n: number): number;
/**
* Moves lowest bit to highest position, which at first step splits
* array on even and odd indices, then it applied again to each part,
* which is core of fft
*/
export declare function bitReversalInplace<T extends MutableArrayLike<any>>(values: T): T;
export declare function bitReversalPermutation<T>(values: T[]): T[];
export type RootsOfUnity = {
roots: (bits: number) => bigint[];
brp(bits: number): bigint[];
inverse(bits: number): bigint[];
omega: (bits: number) => bigint;
clear: () => void;
};
/** We limit roots up to 2**31, which is a lot: 2-billion polynomimal should be rare. */
export declare function rootsOfUnity(field: IField<bigint>, generator?: bigint): RootsOfUnity;
export type Polynomial<T> = MutableArrayLike<T>;
/**
* Maps great to Field<bigint>, but not to Group (EC points):
* - inv from scalar field
* - we need multiplyUnsafe here, instead of multiply for speed
* - multiplyUnsafe is safe in the context: we do mul(rootsOfUnity), which are public and sparse
*/
export type FFTOpts<T, R> = {
add: (a: T, b: T) => T;
sub: (a: T, b: T) => T;
mul: (a: T, scalar: R) => T;
inv: (a: R) => R;
};
export type FFTCoreOpts<R> = {
N: number;
roots: Polynomial<R>;
dit: boolean;
invertButterflies?: boolean;
skipStages?: number;
brp?: boolean;
};
export type FFTCoreLoop<T> = <P extends Polynomial<T>>(values: P) => P;
/**
* Constructs different flavors of FFT. radix2 implementation of low level mutating API. Flavors:
*
* - DIT (Decimation-in-Time): Bottom-Up (leaves -> root), Cool-Turkey
* - DIF (Decimation-in-Frequency): Top-Down (root -> leaves), GentlemanSande
*
* DIT takes brp input, returns natural output.
* DIF takes natural input, returns brp output.
*
* The output is actually identical. Time / frequence distinction is not meaningful
* for Polynomial multiplication in fields.
* Which means if protocol supports/needs brp output/inputs, then we can skip this step.
*
* Cyclic NTT: Rq = Zq[x]/(x^n-1). butterfly_DIT+loop_DIT OR butterfly_DIF+loop_DIT, roots are omega
* Negacyclic NTT: Rq = Zq[x]/(x^n+1). butterfly_DIT+loop_DIF, at least for mlkem / mldsa
*/
export declare const FFTCore: <T, R>(F: FFTOpts<T, R>, coreOpts: FFTCoreOpts<R>) => FFTCoreLoop<T>;
export type FFTMethods<T> = {
direct<P extends Polynomial<T>>(values: P, brpInput?: boolean, brpOutput?: boolean): P;
inverse<P extends Polynomial<T>>(values: P, brpInput?: boolean, brpOutput?: boolean): P;
};
/**
* NTT aka FFT over finite field (NOT over complex numbers).
* Naming mirrors other libraries.
*/
export declare function FFT<T>(roots: RootsOfUnity, opts: FFTOpts<T, bigint>): FFTMethods<T>;
export type CreatePolyFn<P extends Polynomial<T>, T> = (len: number, elm?: T) => P;
export type PolyFn<P extends Polynomial<T>, T> = {
roots: RootsOfUnity;
create: CreatePolyFn<P, T>;
length?: number;
degree: (a: P) => number;
extend: (a: P, len: number) => P;
add: (a: P, b: P) => P;
sub: (a: P, b: P) => P;
mul: (a: P, b: P | T) => P;
dot: (a: P, b: P) => P;
convolve: (a: P, b: P) => P;
shift: (p: P, factor: bigint) => P;
clone: (a: P) => P;
eval: (a: P, basis: P) => T;
monomial: {
basis: (x: T, n: number) => P;
eval: (a: P, x: T) => T;
};
lagrange: {
basis: (x: T, n: number, brp?: boolean) => P;
eval: (a: P, x: T, brp?: boolean) => T;
};
vanishing: (roots: P) => P;
};
/**
* Poly wants a cracker.
*
* Polynomials are functions like `y=f(x)`, which means when we multiply two polynomials, result is
* function `f3(x) = f1(x) * f2(x)`, we don't multiply values. Key takeaways:
*
* - **Polynomial** is an array of coefficients: `f(x) = sum(coeff[i] * basis[i](x))`
* - **Basis** is array of functions
* - **Monominal** is Polynomial where `basis[i](x) == x**i` (powers)
* - **Array size** is domain size
* - **Lattice** is matrix (Polynomial of Polynomials)
*/
export declare function poly<T>(field: IField<T>, roots: RootsOfUnity, create?: undefined, fft?: FFTMethods<T>, length?: number): PolyFn<T[], T>;
export declare function poly<T, P extends Polynomial<T>>(field: IField<T>, roots: RootsOfUnity, create: CreatePolyFn<P, T>, fft?: FFTMethods<T>, length?: number): PolyFn<P, T>;
//# sourceMappingURL=fft.d.ts.map