Files
lcbp3.np-dms.work/frontend/node_modules/@noble/curves/abstract/edwards.js
2025-09-21 20:29:15 +07:00

634 lines
25 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.PrimeEdwardsPoint = void 0;
exports.edwards = edwards;
exports.eddsa = eddsa;
exports.twistedEdwards = twistedEdwards;
/**
* Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y².
* For design rationale of types / exports, see weierstrass module documentation.
* Untwisted Edwards curves exist, but they aren't used in real-world protocols.
* @module
*/
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const utils_ts_1 = require("../utils.js");
const curve_ts_1 = require("./curve.js");
const modular_ts_1 = require("./modular.js");
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8);
function isEdValidXY(Fp, CURVE, x, y) {
const x2 = Fp.sqr(x);
const y2 = Fp.sqr(y);
const left = Fp.add(Fp.mul(CURVE.a, x2), y2);
const right = Fp.add(Fp.ONE, Fp.mul(CURVE.d, Fp.mul(x2, y2)));
return Fp.eql(left, right);
}
function edwards(params, extraOpts = {}) {
const validated = (0, curve_ts_1._createCurveFields)('edwards', params, extraOpts, extraOpts.FpFnLE);
const { Fp, Fn } = validated;
let CURVE = validated.CURVE;
const { h: cofactor } = CURVE;
(0, utils_ts_1._validateObject)(extraOpts, {}, { uvRatio: 'function' });
// Important:
// There are some places where Fp.BYTES is used instead of nByteLength.
// So far, everything has been tested with curves of Fp.BYTES == nByteLength.
// TODO: test and find curves which behave otherwise.
const MASK = _2n << (BigInt(Fn.BYTES * 8) - _1n);
const modP = (n) => Fp.create(n); // Function overrides
// sqrt(u/v)
const uvRatio = extraOpts.uvRatio ||
((u, v) => {
try {
return { isValid: true, value: Fp.sqrt(Fp.div(u, v)) };
}
catch (e) {
return { isValid: false, value: _0n };
}
});
// Validate whether the passed curve params are valid.
// equation ax² + y² = 1 + dx²y² should work for generator point.
if (!isEdValidXY(Fp, CURVE, CURVE.Gx, CURVE.Gy))
throw new Error('bad curve params: generator point');
/**
* Asserts coordinate is valid: 0 <= n < MASK.
* Coordinates >= Fp.ORDER are allowed for zip215.
*/
function acoord(title, n, banZero = false) {
const min = banZero ? _1n : _0n;
(0, utils_ts_1.aInRange)('coordinate ' + title, n, min, MASK);
return n;
}
function aextpoint(other) {
if (!(other instanceof Point))
throw new Error('ExtendedPoint expected');
}
// Converts Extended point to default (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
const toAffineMemo = (0, utils_ts_1.memoized)((p, iz) => {
const { X, Y, Z } = p;
const is0 = p.is0();
if (iz == null)
iz = is0 ? _8n : Fp.inv(Z); // 8 was chosen arbitrarily
const x = modP(X * iz);
const y = modP(Y * iz);
const zz = Fp.mul(Z, iz);
if (is0)
return { x: _0n, y: _1n };
if (zz !== _1n)
throw new Error('invZ was invalid');
return { x, y };
});
const assertValidMemo = (0, utils_ts_1.memoized)((p) => {
const { a, d } = CURVE;
if (p.is0())
throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
// Equation in affine coordinates: ax² + y² = 1 + dx²y²
// Equation in projective coordinates (X/Z, Y/Z, Z): (aX² + Y²)Z² = Z⁴ + dX²Y²
const { X, Y, Z, T } = p;
const X2 = modP(X * X); // X²
const Y2 = modP(Y * Y); // Y²
const Z2 = modP(Z * Z); // Z²
const Z4 = modP(Z2 * Z2); // Z⁴
const aX2 = modP(X2 * a); // aX²
const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
if (left !== right)
throw new Error('bad point: equation left != right (1)');
// In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
const XY = modP(X * Y);
const ZT = modP(Z * T);
if (XY !== ZT)
throw new Error('bad point: equation left != right (2)');
return true;
});
// Extended Point works in extended coordinates: (X, Y, Z, T) ∋ (x=X/Z, y=Y/Z, T=xy).
// https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
class Point {
constructor(X, Y, Z, T) {
this.X = acoord('x', X);
this.Y = acoord('y', Y);
this.Z = acoord('z', Z, true);
this.T = acoord('t', T);
Object.freeze(this);
}
static CURVE() {
return CURVE;
}
static fromAffine(p) {
if (p instanceof Point)
throw new Error('extended point not allowed');
const { x, y } = p || {};
acoord('x', x);
acoord('y', y);
return new Point(x, y, _1n, modP(x * y));
}
// Uses algo from RFC8032 5.1.3.
static fromBytes(bytes, zip215 = false) {
const len = Fp.BYTES;
const { a, d } = CURVE;
bytes = (0, utils_ts_1.copyBytes)((0, utils_ts_1._abytes2)(bytes, len, 'point'));
(0, utils_ts_1._abool2)(zip215, 'zip215');
const normed = (0, utils_ts_1.copyBytes)(bytes); // copy again, we'll manipulate it
const lastByte = bytes[len - 1]; // select last byte
normed[len - 1] = lastByte & ~0x80; // clear last bit
const y = (0, utils_ts_1.bytesToNumberLE)(normed);
// zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
// RFC8032 prohibits >= p, but ZIP215 doesn't
// zip215=true: 0 <= y < MASK (2^256 for ed25519)
// zip215=false: 0 <= y < P (2^255-19 for ed25519)
const max = zip215 ? MASK : Fp.ORDER;
(0, utils_ts_1.aInRange)('point.y', y, _0n, max);
// Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
// ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
const y2 = modP(y * y); // denominator is always non-0 mod p.
const u = modP(y2 - _1n); // u = y² - 1
const v = modP(d * y2 - a); // v = d y² + 1.
let { isValid, value: x } = uvRatio(u, v); // √(u/v)
if (!isValid)
throw new Error('bad point: invalid y coordinate');
const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper
const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
if (!zip215 && x === _0n && isLastByteOdd)
// if x=0 and x_0 = 1, fail
throw new Error('bad point: x=0 and x_0=1');
if (isLastByteOdd !== isXOdd)
x = modP(-x); // if x_0 != x mod 2, set x = p-x
return Point.fromAffine({ x, y });
}
static fromHex(bytes, zip215 = false) {
return Point.fromBytes((0, utils_ts_1.ensureBytes)('point', bytes), zip215);
}
get x() {
return this.toAffine().x;
}
get y() {
return this.toAffine().y;
}
precompute(windowSize = 8, isLazy = true) {
wnaf.createCache(this, windowSize);
if (!isLazy)
this.multiply(_2n); // random number
return this;
}
// Useful in fromAffine() - not for fromBytes(), which always created valid points.
assertValidity() {
assertValidMemo(this);
}
// Compare one point to another.
equals(other) {
aextpoint(other);
const { X: X1, Y: Y1, Z: Z1 } = this;
const { X: X2, Y: Y2, Z: Z2 } = other;
const X1Z2 = modP(X1 * Z2);
const X2Z1 = modP(X2 * Z1);
const Y1Z2 = modP(Y1 * Z2);
const Y2Z1 = modP(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
is0() {
return this.equals(Point.ZERO);
}
negate() {
// Flips point sign to a negative one (-x, y in affine coords)
return new Point(modP(-this.X), this.Y, this.Z, modP(-this.T));
}
// Fast algo for doubling Extended Point.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
// Cost: 4M + 4S + 1*a + 6add + 1*2.
double() {
const { a } = CURVE;
const { X: X1, Y: Y1, Z: Z1 } = this;
const A = modP(X1 * X1); // A = X12
const B = modP(Y1 * Y1); // B = Y12
const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12
const D = modP(a * A); // D = a*A
const x1y1 = X1 + Y1;
const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
const G = D + B; // G = D+B
const F = G - C; // F = G-C
const H = D - B; // H = D-B
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
// Fast algo for adding 2 Extended Points.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
// Cost: 9M + 1*a + 1*d + 7add.
add(other) {
aextpoint(other);
const { a, d } = CURVE;
const { X: X1, Y: Y1, Z: Z1, T: T1 } = this;
const { X: X2, Y: Y2, Z: Z2, T: T2 } = other;
const A = modP(X1 * X2); // A = X1*X2
const B = modP(Y1 * Y2); // B = Y1*Y2
const C = modP(T1 * d * T2); // C = T1*d*T2
const D = modP(Z1 * Z2); // D = Z1*Z2
const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
const F = D - C; // F = D-C
const G = D + C; // G = D+C
const H = modP(B - a * A); // H = B-a*A
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
subtract(other) {
return this.add(other.negate());
}
// Constant-time multiplication.
multiply(scalar) {
// 1 <= scalar < L
if (!Fn.isValidNot0(scalar))
throw new Error('invalid scalar: expected 1 <= sc < curve.n');
const { p, f } = wnaf.cached(this, scalar, (p) => (0, curve_ts_1.normalizeZ)(Point, p));
return (0, curve_ts_1.normalizeZ)(Point, [p, f])[0];
}
// Non-constant-time multiplication. Uses double-and-add algorithm.
// It's faster, but should only be used when you don't care about
// an exposed private key e.g. sig verification.
// Does NOT allow scalars higher than CURVE.n.
// Accepts optional accumulator to merge with multiply (important for sparse scalars)
multiplyUnsafe(scalar, acc = Point.ZERO) {
// 0 <= scalar < L
if (!Fn.isValid(scalar))
throw new Error('invalid scalar: expected 0 <= sc < curve.n');
if (scalar === _0n)
return Point.ZERO;
if (this.is0() || scalar === _1n)
return this;
return wnaf.unsafe(this, scalar, (p) => (0, curve_ts_1.normalizeZ)(Point, p), acc);
}
// Checks if point is of small order.
// If you add something to small order point, you will have "dirty"
// point with torsion component.
// Multiplies point by cofactor and checks if the result is 0.
isSmallOrder() {
return this.multiplyUnsafe(cofactor).is0();
}
// Multiplies point by curve order and checks if the result is 0.
// Returns `false` is the point is dirty.
isTorsionFree() {
return wnaf.unsafe(this, CURVE.n).is0();
}
// Converts Extended point to default (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
toAffine(invertedZ) {
return toAffineMemo(this, invertedZ);
}
clearCofactor() {
if (cofactor === _1n)
return this;
return this.multiplyUnsafe(cofactor);
}
toBytes() {
const { x, y } = this.toAffine();
// Fp.toBytes() allows non-canonical encoding of y (>= p).
const bytes = Fp.toBytes(y);
// Each y has 2 valid points: (x, y), (x,-y).
// When compressing, it's enough to store y and use the last byte to encode sign of x
bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0;
return bytes;
}
toHex() {
return (0, utils_ts_1.bytesToHex)(this.toBytes());
}
toString() {
return `<Point ${this.is0() ? 'ZERO' : this.toHex()}>`;
}
// TODO: remove
get ex() {
return this.X;
}
get ey() {
return this.Y;
}
get ez() {
return this.Z;
}
get et() {
return this.T;
}
static normalizeZ(points) {
return (0, curve_ts_1.normalizeZ)(Point, points);
}
static msm(points, scalars) {
return (0, curve_ts_1.pippenger)(Point, Fn, points, scalars);
}
_setWindowSize(windowSize) {
this.precompute(windowSize);
}
toRawBytes() {
return this.toBytes();
}
}
// base / generator point
Point.BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy));
// zero / infinity / identity point
Point.ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0
// math field
Point.Fp = Fp;
// scalar field
Point.Fn = Fn;
const wnaf = new curve_ts_1.wNAF(Point, Fn.BITS);
Point.BASE.precompute(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
return Point;
}
/**
* Base class for prime-order points like Ristretto255 and Decaf448.
* These points eliminate cofactor issues by representing equivalence classes
* of Edwards curve points.
*/
class PrimeEdwardsPoint {
constructor(ep) {
this.ep = ep;
}
// Static methods that must be implemented by subclasses
static fromBytes(_bytes) {
(0, utils_ts_1.notImplemented)();
}
static fromHex(_hex) {
(0, utils_ts_1.notImplemented)();
}
get x() {
return this.toAffine().x;
}
get y() {
return this.toAffine().y;
}
// Common implementations
clearCofactor() {
// no-op for prime-order groups
return this;
}
assertValidity() {
this.ep.assertValidity();
}
toAffine(invertedZ) {
return this.ep.toAffine(invertedZ);
}
toHex() {
return (0, utils_ts_1.bytesToHex)(this.toBytes());
}
toString() {
return this.toHex();
}
isTorsionFree() {
return true;
}
isSmallOrder() {
return false;
}
add(other) {
this.assertSame(other);
return this.init(this.ep.add(other.ep));
}
subtract(other) {
this.assertSame(other);
return this.init(this.ep.subtract(other.ep));
}
multiply(scalar) {
return this.init(this.ep.multiply(scalar));
}
multiplyUnsafe(scalar) {
return this.init(this.ep.multiplyUnsafe(scalar));
}
double() {
return this.init(this.ep.double());
}
negate() {
return this.init(this.ep.negate());
}
precompute(windowSize, isLazy) {
return this.init(this.ep.precompute(windowSize, isLazy));
}
/** @deprecated use `toBytes` */
toRawBytes() {
return this.toBytes();
}
}
exports.PrimeEdwardsPoint = PrimeEdwardsPoint;
/**
* Initializes EdDSA signatures over given Edwards curve.
*/
function eddsa(Point, cHash, eddsaOpts = {}) {
if (typeof cHash !== 'function')
throw new Error('"hash" function param is required');
(0, utils_ts_1._validateObject)(eddsaOpts, {}, {
adjustScalarBytes: 'function',
randomBytes: 'function',
domain: 'function',
prehash: 'function',
mapToCurve: 'function',
});
const { prehash } = eddsaOpts;
const { BASE, Fp, Fn } = Point;
const randomBytes = eddsaOpts.randomBytes || utils_ts_1.randomBytes;
const adjustScalarBytes = eddsaOpts.adjustScalarBytes || ((bytes) => bytes);
const domain = eddsaOpts.domain ||
((data, ctx, phflag) => {
(0, utils_ts_1._abool2)(phflag, 'phflag');
if (ctx.length || phflag)
throw new Error('Contexts/pre-hash are not supported');
return data;
}); // NOOP
// Little-endian SHA512 with modulo n
function modN_LE(hash) {
return Fn.create((0, utils_ts_1.bytesToNumberLE)(hash)); // Not Fn.fromBytes: it has length limit
}
// Get the hashed private scalar per RFC8032 5.1.5
function getPrivateScalar(key) {
const len = lengths.secretKey;
key = (0, utils_ts_1.ensureBytes)('private key', key, len);
// Hash private key with curve's hash function to produce uniformingly random input
// Check byte lengths: ensure(64, h(ensure(32, key)))
const hashed = (0, utils_ts_1.ensureBytes)('hashed private key', cHash(key), 2 * len);
const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
const scalar = modN_LE(head); // The actual private scalar
return { head, prefix, scalar };
}
/** Convenience method that creates public key from scalar. RFC8032 5.1.5 */
function getExtendedPublicKey(secretKey) {
const { head, prefix, scalar } = getPrivateScalar(secretKey);
const point = BASE.multiply(scalar); // Point on Edwards curve aka public key
const pointBytes = point.toBytes();
return { head, prefix, scalar, point, pointBytes };
}
/** Calculates EdDSA pub key. RFC8032 5.1.5. */
function getPublicKey(secretKey) {
return getExtendedPublicKey(secretKey).pointBytes;
}
// int('LE', SHA512(dom2(F, C) || msgs)) mod N
function hashDomainToScalar(context = Uint8Array.of(), ...msgs) {
const msg = (0, utils_ts_1.concatBytes)(...msgs);
return modN_LE(cHash(domain(msg, (0, utils_ts_1.ensureBytes)('context', context), !!prehash)));
}
/** Signs message with privateKey. RFC8032 5.1.6 */
function sign(msg, secretKey, options = {}) {
msg = (0, utils_ts_1.ensureBytes)('message', msg);
if (prehash)
msg = prehash(msg); // for ed25519ph etc.
const { prefix, scalar, pointBytes } = getExtendedPublicKey(secretKey);
const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
const R = BASE.multiply(r).toBytes(); // R = rG
const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
const s = Fn.create(r + k * scalar); // S = (r + k * s) mod L
if (!Fn.isValid(s))
throw new Error('sign failed: invalid s'); // 0 <= s < L
const rs = (0, utils_ts_1.concatBytes)(R, Fn.toBytes(s));
return (0, utils_ts_1._abytes2)(rs, lengths.signature, 'result');
}
// verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
const verifyOpts = { zip215: true };
/**
* Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
* An extended group equation is checked.
*/
function verify(sig, msg, publicKey, options = verifyOpts) {
const { context, zip215 } = options;
const len = lengths.signature;
sig = (0, utils_ts_1.ensureBytes)('signature', sig, len);
msg = (0, utils_ts_1.ensureBytes)('message', msg);
publicKey = (0, utils_ts_1.ensureBytes)('publicKey', publicKey, lengths.publicKey);
if (zip215 !== undefined)
(0, utils_ts_1._abool2)(zip215, 'zip215');
if (prehash)
msg = prehash(msg); // for ed25519ph, etc
const mid = len / 2;
const r = sig.subarray(0, mid);
const s = (0, utils_ts_1.bytesToNumberLE)(sig.subarray(mid, len));
let A, R, SB;
try {
// zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
// zip215=true: 0 <= y < MASK (2^256 for ed25519)
// zip215=false: 0 <= y < P (2^255-19 for ed25519)
A = Point.fromBytes(publicKey, zip215);
R = Point.fromBytes(r, zip215);
SB = BASE.multiplyUnsafe(s); // 0 <= s < l is done inside
}
catch (error) {
return false;
}
if (!zip215 && A.isSmallOrder())
return false; // zip215 allows public keys of small order
const k = hashDomainToScalar(context, R.toBytes(), A.toBytes(), msg);
const RkA = R.add(A.multiplyUnsafe(k));
// Extended group equation
// [8][S]B = [8]R + [8][k]A'
return RkA.subtract(SB).clearCofactor().is0();
}
const _size = Fp.BYTES; // 32 for ed25519, 57 for ed448
const lengths = {
secretKey: _size,
publicKey: _size,
signature: 2 * _size,
seed: _size,
};
function randomSecretKey(seed = randomBytes(lengths.seed)) {
return (0, utils_ts_1._abytes2)(seed, lengths.seed, 'seed');
}
function keygen(seed) {
const secretKey = utils.randomSecretKey(seed);
return { secretKey, publicKey: getPublicKey(secretKey) };
}
function isValidSecretKey(key) {
return (0, utils_ts_1.isBytes)(key) && key.length === Fn.BYTES;
}
function isValidPublicKey(key, zip215) {
try {
return !!Point.fromBytes(key, zip215);
}
catch (error) {
return false;
}
}
const utils = {
getExtendedPublicKey,
randomSecretKey,
isValidSecretKey,
isValidPublicKey,
/**
* Converts ed public key to x public key. Uses formula:
* - ed25519:
* - `(u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)`
* - `(x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))`
* - ed448:
* - `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)`
* - `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))`
*/
toMontgomery(publicKey) {
const { y } = Point.fromBytes(publicKey);
const size = lengths.publicKey;
const is25519 = size === 32;
if (!is25519 && size !== 57)
throw new Error('only defined for 25519 and 448');
const u = is25519 ? Fp.div(_1n + y, _1n - y) : Fp.div(y - _1n, y + _1n);
return Fp.toBytes(u);
},
toMontgomerySecret(secretKey) {
const size = lengths.secretKey;
(0, utils_ts_1._abytes2)(secretKey, size);
const hashed = cHash(secretKey.subarray(0, size));
return adjustScalarBytes(hashed).subarray(0, size);
},
/** @deprecated */
randomPrivateKey: randomSecretKey,
/** @deprecated */
precompute(windowSize = 8, point = Point.BASE) {
return point.precompute(windowSize, false);
},
};
return Object.freeze({
keygen,
getPublicKey,
sign,
verify,
utils,
Point,
lengths,
});
}
function _eddsa_legacy_opts_to_new(c) {
const CURVE = {
a: c.a,
d: c.d,
p: c.Fp.ORDER,
n: c.n,
h: c.h,
Gx: c.Gx,
Gy: c.Gy,
};
const Fp = c.Fp;
const Fn = (0, modular_ts_1.Field)(CURVE.n, c.nBitLength, true);
const curveOpts = { Fp, Fn, uvRatio: c.uvRatio };
const eddsaOpts = {
randomBytes: c.randomBytes,
adjustScalarBytes: c.adjustScalarBytes,
domain: c.domain,
prehash: c.prehash,
mapToCurve: c.mapToCurve,
};
return { CURVE, curveOpts, hash: c.hash, eddsaOpts };
}
function _eddsa_new_output_to_legacy(c, eddsa) {
const Point = eddsa.Point;
const legacy = Object.assign({}, eddsa, {
ExtendedPoint: Point,
CURVE: c,
nBitLength: Point.Fn.BITS,
nByteLength: Point.Fn.BYTES,
});
return legacy;
}
// TODO: remove. Use eddsa
function twistedEdwards(c) {
const { CURVE, curveOpts, hash, eddsaOpts } = _eddsa_legacy_opts_to_new(c);
const Point = edwards(CURVE, curveOpts);
const EDDSA = eddsa(Point, hash, eddsaOpts);
return _eddsa_new_output_to_legacy(c, EDDSA);
}
//# sourceMappingURL=edwards.js.map