476 lines
18 KiB
JavaScript
476 lines
18 KiB
JavaScript
"use strict";
|
||
Object.defineProperty(exports, "__esModule", { value: true });
|
||
exports.wNAF = void 0;
|
||
exports.negateCt = negateCt;
|
||
exports.normalizeZ = normalizeZ;
|
||
exports.mulEndoUnsafe = mulEndoUnsafe;
|
||
exports.pippenger = pippenger;
|
||
exports.precomputeMSMUnsafe = precomputeMSMUnsafe;
|
||
exports.validateBasic = validateBasic;
|
||
exports._createCurveFields = _createCurveFields;
|
||
/**
|
||
* Methods for elliptic curve multiplication by scalars.
|
||
* Contains wNAF, pippenger.
|
||
* @module
|
||
*/
|
||
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
|
||
const utils_ts_1 = require("../utils.js");
|
||
const modular_ts_1 = require("./modular.js");
|
||
const _0n = BigInt(0);
|
||
const _1n = BigInt(1);
|
||
function negateCt(condition, item) {
|
||
const neg = item.negate();
|
||
return condition ? neg : item;
|
||
}
|
||
/**
|
||
* Takes a bunch of Projective Points but executes only one
|
||
* inversion on all of them. Inversion is very slow operation,
|
||
* so this improves performance massively.
|
||
* Optimization: converts a list of projective points to a list of identical points with Z=1.
|
||
*/
|
||
function normalizeZ(c, points) {
|
||
const invertedZs = (0, modular_ts_1.FpInvertBatch)(c.Fp, points.map((p) => p.Z));
|
||
return points.map((p, i) => c.fromAffine(p.toAffine(invertedZs[i])));
|
||
}
|
||
function validateW(W, bits) {
|
||
if (!Number.isSafeInteger(W) || W <= 0 || W > bits)
|
||
throw new Error('invalid window size, expected [1..' + bits + '], got W=' + W);
|
||
}
|
||
function calcWOpts(W, scalarBits) {
|
||
validateW(W, scalarBits);
|
||
const windows = Math.ceil(scalarBits / W) + 1; // W=8 33. Not 32, because we skip zero
|
||
const windowSize = 2 ** (W - 1); // W=8 128. Not 256, because we skip zero
|
||
const maxNumber = 2 ** W; // W=8 256
|
||
const mask = (0, utils_ts_1.bitMask)(W); // W=8 255 == mask 0b11111111
|
||
const shiftBy = BigInt(W); // W=8 8
|
||
return { windows, windowSize, mask, maxNumber, shiftBy };
|
||
}
|
||
function calcOffsets(n, window, wOpts) {
|
||
const { windowSize, mask, maxNumber, shiftBy } = wOpts;
|
||
let wbits = Number(n & mask); // extract W bits.
|
||
let nextN = n >> shiftBy; // shift number by W bits.
|
||
// What actually happens here:
|
||
// const highestBit = Number(mask ^ (mask >> 1n));
|
||
// let wbits2 = wbits - 1; // skip zero
|
||
// if (wbits2 & highestBit) { wbits2 ^= Number(mask); // (~);
|
||
// split if bits > max: +224 => 256-32
|
||
if (wbits > windowSize) {
|
||
// we skip zero, which means instead of `>= size-1`, we do `> size`
|
||
wbits -= maxNumber; // -32, can be maxNumber - wbits, but then we need to set isNeg here.
|
||
nextN += _1n; // +256 (carry)
|
||
}
|
||
const offsetStart = window * windowSize;
|
||
const offset = offsetStart + Math.abs(wbits) - 1; // -1 because we skip zero
|
||
const isZero = wbits === 0; // is current window slice a 0?
|
||
const isNeg = wbits < 0; // is current window slice negative?
|
||
const isNegF = window % 2 !== 0; // fake random statement for noise
|
||
const offsetF = offsetStart; // fake offset for noise
|
||
return { nextN, offset, isZero, isNeg, isNegF, offsetF };
|
||
}
|
||
function validateMSMPoints(points, c) {
|
||
if (!Array.isArray(points))
|
||
throw new Error('array expected');
|
||
points.forEach((p, i) => {
|
||
if (!(p instanceof c))
|
||
throw new Error('invalid point at index ' + i);
|
||
});
|
||
}
|
||
function validateMSMScalars(scalars, field) {
|
||
if (!Array.isArray(scalars))
|
||
throw new Error('array of scalars expected');
|
||
scalars.forEach((s, i) => {
|
||
if (!field.isValid(s))
|
||
throw new Error('invalid scalar at index ' + i);
|
||
});
|
||
}
|
||
// Since points in different groups cannot be equal (different object constructor),
|
||
// we can have single place to store precomputes.
|
||
// Allows to make points frozen / immutable.
|
||
const pointPrecomputes = new WeakMap();
|
||
const pointWindowSizes = new WeakMap();
|
||
function getW(P) {
|
||
// To disable precomputes:
|
||
// return 1;
|
||
return pointWindowSizes.get(P) || 1;
|
||
}
|
||
function assert0(n) {
|
||
if (n !== _0n)
|
||
throw new Error('invalid wNAF');
|
||
}
|
||
/**
|
||
* Elliptic curve multiplication of Point by scalar. Fragile.
|
||
* Table generation takes **30MB of ram and 10ms on high-end CPU**,
|
||
* but may take much longer on slow devices. Actual generation will happen on
|
||
* first call of `multiply()`. By default, `BASE` point is precomputed.
|
||
*
|
||
* Scalars should always be less than curve order: this should be checked inside of a curve itself.
|
||
* Creates precomputation tables for fast multiplication:
|
||
* - private scalar is split by fixed size windows of W bits
|
||
* - every window point is collected from window's table & added to accumulator
|
||
* - since windows are different, same point inside tables won't be accessed more than once per calc
|
||
* - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
|
||
* - +1 window is neccessary for wNAF
|
||
* - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
|
||
*
|
||
* @todo Research returning 2d JS array of windows, instead of a single window.
|
||
* This would allow windows to be in different memory locations
|
||
*/
|
||
class wNAF {
|
||
// Parametrized with a given Point class (not individual point)
|
||
constructor(Point, bits) {
|
||
this.BASE = Point.BASE;
|
||
this.ZERO = Point.ZERO;
|
||
this.Fn = Point.Fn;
|
||
this.bits = bits;
|
||
}
|
||
// non-const time multiplication ladder
|
||
_unsafeLadder(elm, n, p = this.ZERO) {
|
||
let d = elm;
|
||
while (n > _0n) {
|
||
if (n & _1n)
|
||
p = p.add(d);
|
||
d = d.double();
|
||
n >>= _1n;
|
||
}
|
||
return p;
|
||
}
|
||
/**
|
||
* Creates a wNAF precomputation window. Used for caching.
|
||
* Default window size is set by `utils.precompute()` and is equal to 8.
|
||
* Number of precomputed points depends on the curve size:
|
||
* 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
|
||
* - 𝑊 is the window size
|
||
* - 𝑛 is the bitlength of the curve order.
|
||
* For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
|
||
* @param point Point instance
|
||
* @param W window size
|
||
* @returns precomputed point tables flattened to a single array
|
||
*/
|
||
precomputeWindow(point, W) {
|
||
const { windows, windowSize } = calcWOpts(W, this.bits);
|
||
const points = [];
|
||
let p = point;
|
||
let base = p;
|
||
for (let window = 0; window < windows; window++) {
|
||
base = p;
|
||
points.push(base);
|
||
// i=1, bc we skip 0
|
||
for (let i = 1; i < windowSize; i++) {
|
||
base = base.add(p);
|
||
points.push(base);
|
||
}
|
||
p = base.double();
|
||
}
|
||
return points;
|
||
}
|
||
/**
|
||
* Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
|
||
* More compact implementation:
|
||
* https://github.com/paulmillr/noble-secp256k1/blob/47cb1669b6e506ad66b35fe7d76132ae97465da2/index.ts#L502-L541
|
||
* @returns real and fake (for const-time) points
|
||
*/
|
||
wNAF(W, precomputes, n) {
|
||
// Scalar should be smaller than field order
|
||
if (!this.Fn.isValid(n))
|
||
throw new Error('invalid scalar');
|
||
// Accumulators
|
||
let p = this.ZERO;
|
||
let f = this.BASE;
|
||
// This code was first written with assumption that 'f' and 'p' will never be infinity point:
|
||
// since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
|
||
// there is negate now: it is possible that negated element from low value
|
||
// would be the same as high element, which will create carry into next window.
|
||
// It's not obvious how this can fail, but still worth investigating later.
|
||
const wo = calcWOpts(W, this.bits);
|
||
for (let window = 0; window < wo.windows; window++) {
|
||
// (n === _0n) is handled and not early-exited. isEven and offsetF are used for noise
|
||
const { nextN, offset, isZero, isNeg, isNegF, offsetF } = calcOffsets(n, window, wo);
|
||
n = nextN;
|
||
if (isZero) {
|
||
// bits are 0: add garbage to fake point
|
||
// Important part for const-time getPublicKey: add random "noise" point to f.
|
||
f = f.add(negateCt(isNegF, precomputes[offsetF]));
|
||
}
|
||
else {
|
||
// bits are 1: add to result point
|
||
p = p.add(negateCt(isNeg, precomputes[offset]));
|
||
}
|
||
}
|
||
assert0(n);
|
||
// Return both real and fake points: JIT won't eliminate f.
|
||
// At this point there is a way to F be infinity-point even if p is not,
|
||
// which makes it less const-time: around 1 bigint multiply.
|
||
return { p, f };
|
||
}
|
||
/**
|
||
* Implements ec unsafe (non const-time) multiplication using precomputed tables and w-ary non-adjacent form.
|
||
* @param acc accumulator point to add result of multiplication
|
||
* @returns point
|
||
*/
|
||
wNAFUnsafe(W, precomputes, n, acc = this.ZERO) {
|
||
const wo = calcWOpts(W, this.bits);
|
||
for (let window = 0; window < wo.windows; window++) {
|
||
if (n === _0n)
|
||
break; // Early-exit, skip 0 value
|
||
const { nextN, offset, isZero, isNeg } = calcOffsets(n, window, wo);
|
||
n = nextN;
|
||
if (isZero) {
|
||
// Window bits are 0: skip processing.
|
||
// Move to next window.
|
||
continue;
|
||
}
|
||
else {
|
||
const item = precomputes[offset];
|
||
acc = acc.add(isNeg ? item.negate() : item); // Re-using acc allows to save adds in MSM
|
||
}
|
||
}
|
||
assert0(n);
|
||
return acc;
|
||
}
|
||
getPrecomputes(W, point, transform) {
|
||
// Calculate precomputes on a first run, reuse them after
|
||
let comp = pointPrecomputes.get(point);
|
||
if (!comp) {
|
||
comp = this.precomputeWindow(point, W);
|
||
if (W !== 1) {
|
||
// Doing transform outside of if brings 15% perf hit
|
||
if (typeof transform === 'function')
|
||
comp = transform(comp);
|
||
pointPrecomputes.set(point, comp);
|
||
}
|
||
}
|
||
return comp;
|
||
}
|
||
cached(point, scalar, transform) {
|
||
const W = getW(point);
|
||
return this.wNAF(W, this.getPrecomputes(W, point, transform), scalar);
|
||
}
|
||
unsafe(point, scalar, transform, prev) {
|
||
const W = getW(point);
|
||
if (W === 1)
|
||
return this._unsafeLadder(point, scalar, prev); // For W=1 ladder is ~x2 faster
|
||
return this.wNAFUnsafe(W, this.getPrecomputes(W, point, transform), scalar, prev);
|
||
}
|
||
// We calculate precomputes for elliptic curve point multiplication
|
||
// using windowed method. This specifies window size and
|
||
// stores precomputed values. Usually only base point would be precomputed.
|
||
createCache(P, W) {
|
||
validateW(W, this.bits);
|
||
pointWindowSizes.set(P, W);
|
||
pointPrecomputes.delete(P);
|
||
}
|
||
hasCache(elm) {
|
||
return getW(elm) !== 1;
|
||
}
|
||
}
|
||
exports.wNAF = wNAF;
|
||
/**
|
||
* Endomorphism-specific multiplication for Koblitz curves.
|
||
* Cost: 128 dbl, 0-256 adds.
|
||
*/
|
||
function mulEndoUnsafe(Point, point, k1, k2) {
|
||
let acc = point;
|
||
let p1 = Point.ZERO;
|
||
let p2 = Point.ZERO;
|
||
while (k1 > _0n || k2 > _0n) {
|
||
if (k1 & _1n)
|
||
p1 = p1.add(acc);
|
||
if (k2 & _1n)
|
||
p2 = p2.add(acc);
|
||
acc = acc.double();
|
||
k1 >>= _1n;
|
||
k2 >>= _1n;
|
||
}
|
||
return { p1, p2 };
|
||
}
|
||
/**
|
||
* Pippenger algorithm for multi-scalar multiplication (MSM, Pa + Qb + Rc + ...).
|
||
* 30x faster vs naive addition on L=4096, 10x faster than precomputes.
|
||
* For N=254bit, L=1, it does: 1024 ADD + 254 DBL. For L=5: 1536 ADD + 254 DBL.
|
||
* Algorithmically constant-time (for same L), even when 1 point + scalar, or when scalar = 0.
|
||
* @param c Curve Point constructor
|
||
* @param fieldN field over CURVE.N - important that it's not over CURVE.P
|
||
* @param points array of L curve points
|
||
* @param scalars array of L scalars (aka secret keys / bigints)
|
||
*/
|
||
function pippenger(c, fieldN, points, scalars) {
|
||
// If we split scalars by some window (let's say 8 bits), every chunk will only
|
||
// take 256 buckets even if there are 4096 scalars, also re-uses double.
|
||
// TODO:
|
||
// - https://eprint.iacr.org/2024/750.pdf
|
||
// - https://tches.iacr.org/index.php/TCHES/article/view/10287
|
||
// 0 is accepted in scalars
|
||
validateMSMPoints(points, c);
|
||
validateMSMScalars(scalars, fieldN);
|
||
const plength = points.length;
|
||
const slength = scalars.length;
|
||
if (plength !== slength)
|
||
throw new Error('arrays of points and scalars must have equal length');
|
||
// if (plength === 0) throw new Error('array must be of length >= 2');
|
||
const zero = c.ZERO;
|
||
const wbits = (0, utils_ts_1.bitLen)(BigInt(plength));
|
||
let windowSize = 1; // bits
|
||
if (wbits > 12)
|
||
windowSize = wbits - 3;
|
||
else if (wbits > 4)
|
||
windowSize = wbits - 2;
|
||
else if (wbits > 0)
|
||
windowSize = 2;
|
||
const MASK = (0, utils_ts_1.bitMask)(windowSize);
|
||
const buckets = new Array(Number(MASK) + 1).fill(zero); // +1 for zero array
|
||
const lastBits = Math.floor((fieldN.BITS - 1) / windowSize) * windowSize;
|
||
let sum = zero;
|
||
for (let i = lastBits; i >= 0; i -= windowSize) {
|
||
buckets.fill(zero);
|
||
for (let j = 0; j < slength; j++) {
|
||
const scalar = scalars[j];
|
||
const wbits = Number((scalar >> BigInt(i)) & MASK);
|
||
buckets[wbits] = buckets[wbits].add(points[j]);
|
||
}
|
||
let resI = zero; // not using this will do small speed-up, but will lose ct
|
||
// Skip first bucket, because it is zero
|
||
for (let j = buckets.length - 1, sumI = zero; j > 0; j--) {
|
||
sumI = sumI.add(buckets[j]);
|
||
resI = resI.add(sumI);
|
||
}
|
||
sum = sum.add(resI);
|
||
if (i !== 0)
|
||
for (let j = 0; j < windowSize; j++)
|
||
sum = sum.double();
|
||
}
|
||
return sum;
|
||
}
|
||
/**
|
||
* Precomputed multi-scalar multiplication (MSM, Pa + Qb + Rc + ...).
|
||
* @param c Curve Point constructor
|
||
* @param fieldN field over CURVE.N - important that it's not over CURVE.P
|
||
* @param points array of L curve points
|
||
* @returns function which multiplies points with scaars
|
||
*/
|
||
function precomputeMSMUnsafe(c, fieldN, points, windowSize) {
|
||
/**
|
||
* Performance Analysis of Window-based Precomputation
|
||
*
|
||
* Base Case (256-bit scalar, 8-bit window):
|
||
* - Standard precomputation requires:
|
||
* - 31 additions per scalar × 256 scalars = 7,936 ops
|
||
* - Plus 255 summary additions = 8,191 total ops
|
||
* Note: Summary additions can be optimized via accumulator
|
||
*
|
||
* Chunked Precomputation Analysis:
|
||
* - Using 32 chunks requires:
|
||
* - 255 additions per chunk
|
||
* - 256 doublings
|
||
* - Total: (255 × 32) + 256 = 8,416 ops
|
||
*
|
||
* Memory Usage Comparison:
|
||
* Window Size | Standard Points | Chunked Points
|
||
* ------------|-----------------|---------------
|
||
* 4-bit | 520 | 15
|
||
* 8-bit | 4,224 | 255
|
||
* 10-bit | 13,824 | 1,023
|
||
* 16-bit | 557,056 | 65,535
|
||
*
|
||
* Key Advantages:
|
||
* 1. Enables larger window sizes due to reduced memory overhead
|
||
* 2. More efficient for smaller scalar counts:
|
||
* - 16 chunks: (16 × 255) + 256 = 4,336 ops
|
||
* - ~2x faster than standard 8,191 ops
|
||
*
|
||
* Limitations:
|
||
* - Not suitable for plain precomputes (requires 256 constant doublings)
|
||
* - Performance degrades with larger scalar counts:
|
||
* - Optimal for ~256 scalars
|
||
* - Less efficient for 4096+ scalars (Pippenger preferred)
|
||
*/
|
||
validateW(windowSize, fieldN.BITS);
|
||
validateMSMPoints(points, c);
|
||
const zero = c.ZERO;
|
||
const tableSize = 2 ** windowSize - 1; // table size (without zero)
|
||
const chunks = Math.ceil(fieldN.BITS / windowSize); // chunks of item
|
||
const MASK = (0, utils_ts_1.bitMask)(windowSize);
|
||
const tables = points.map((p) => {
|
||
const res = [];
|
||
for (let i = 0, acc = p; i < tableSize; i++) {
|
||
res.push(acc);
|
||
acc = acc.add(p);
|
||
}
|
||
return res;
|
||
});
|
||
return (scalars) => {
|
||
validateMSMScalars(scalars, fieldN);
|
||
if (scalars.length > points.length)
|
||
throw new Error('array of scalars must be smaller than array of points');
|
||
let res = zero;
|
||
for (let i = 0; i < chunks; i++) {
|
||
// No need to double if accumulator is still zero.
|
||
if (res !== zero)
|
||
for (let j = 0; j < windowSize; j++)
|
||
res = res.double();
|
||
const shiftBy = BigInt(chunks * windowSize - (i + 1) * windowSize);
|
||
for (let j = 0; j < scalars.length; j++) {
|
||
const n = scalars[j];
|
||
const curr = Number((n >> shiftBy) & MASK);
|
||
if (!curr)
|
||
continue; // skip zero scalars chunks
|
||
res = res.add(tables[j][curr - 1]);
|
||
}
|
||
}
|
||
return res;
|
||
};
|
||
}
|
||
// TODO: remove
|
||
/** @deprecated */
|
||
function validateBasic(curve) {
|
||
(0, modular_ts_1.validateField)(curve.Fp);
|
||
(0, utils_ts_1.validateObject)(curve, {
|
||
n: 'bigint',
|
||
h: 'bigint',
|
||
Gx: 'field',
|
||
Gy: 'field',
|
||
}, {
|
||
nBitLength: 'isSafeInteger',
|
||
nByteLength: 'isSafeInteger',
|
||
});
|
||
// Set defaults
|
||
return Object.freeze({
|
||
...(0, modular_ts_1.nLength)(curve.n, curve.nBitLength),
|
||
...curve,
|
||
...{ p: curve.Fp.ORDER },
|
||
});
|
||
}
|
||
function createField(order, field, isLE) {
|
||
if (field) {
|
||
if (field.ORDER !== order)
|
||
throw new Error('Field.ORDER must match order: Fp == p, Fn == n');
|
||
(0, modular_ts_1.validateField)(field);
|
||
return field;
|
||
}
|
||
else {
|
||
return (0, modular_ts_1.Field)(order, { isLE });
|
||
}
|
||
}
|
||
/** Validates CURVE opts and creates fields */
|
||
function _createCurveFields(type, CURVE, curveOpts = {}, FpFnLE) {
|
||
if (FpFnLE === undefined)
|
||
FpFnLE = type === 'edwards';
|
||
if (!CURVE || typeof CURVE !== 'object')
|
||
throw new Error(`expected valid ${type} CURVE object`);
|
||
for (const p of ['p', 'n', 'h']) {
|
||
const val = CURVE[p];
|
||
if (!(typeof val === 'bigint' && val > _0n))
|
||
throw new Error(`CURVE.${p} must be positive bigint`);
|
||
}
|
||
const Fp = createField(CURVE.p, curveOpts.Fp, FpFnLE);
|
||
const Fn = createField(CURVE.n, curveOpts.Fn, FpFnLE);
|
||
const _b = type === 'weierstrass' ? 'b' : 'd';
|
||
const params = ['Gx', 'Gy', 'a', _b];
|
||
for (const p of params) {
|
||
// @ts-ignore
|
||
if (!Fp.isValid(CURVE[p]))
|
||
throw new Error(`CURVE.${p} must be valid field element of CURVE.Fp`);
|
||
}
|
||
CURVE = Object.freeze(Object.assign({}, CURVE));
|
||
return { CURVE, Fp, Fn };
|
||
}
|
||
//# sourceMappingURL=curve.js.map
|