"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.edwardsToMontgomery = exports.hash_to_decaf448 = exports.hashToDecaf448 = exports.encodeToCurve = exports.hashToCurve = exports.DecafPoint = exports.ED448_TORSION_SUBGROUP = exports.decaf448_hasher = exports.decaf448 = exports.ed448_hasher = exports.x448 = exports.E448 = exports.ed448ph = exports.ed448 = void 0; exports.edwardsToMontgomeryPub = edwardsToMontgomeryPub; /** * Edwards448 (not Ed448-Goldilocks) curve with following addons: * - X448 ECDH * - Decaf cofactor elimination * - Elligator hash-to-group / point indistinguishability * Conforms to RFC 8032 https://www.rfc-editor.org/rfc/rfc8032.html#section-5.2 * @module */ /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ const sha3_js_1 = require("@noble/hashes/sha3.js"); const utils_js_1 = require("@noble/hashes/utils.js"); const curve_ts_1 = require("./abstract/curve.js"); const edwards_ts_1 = require("./abstract/edwards.js"); const hash_to_curve_ts_1 = require("./abstract/hash-to-curve.js"); const modular_ts_1 = require("./abstract/modular.js"); const montgomery_ts_1 = require("./abstract/montgomery.js"); const utils_ts_1 = require("./utils.js"); // edwards448 curve // a = 1n // d = Fp.neg(39081n) // Finite field 2n**448n - 2n**224n - 1n // Subgroup order // 2n**446n - 13818066809895115352007386748515426880336692474882178609894547503885n const ed448_CURVE = { p: BigInt('0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff'), n: BigInt('0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3'), h: BigInt(4), a: BigInt(1), d: BigInt('0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756'), Gx: BigInt('0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e'), Gy: BigInt('0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14'), }; // E448 NIST curve is identical to edwards448, except for: // d = 39082/39081 // Gx = 3/2 const E448_CURVE = Object.assign({}, ed448_CURVE, { d: BigInt('0xd78b4bdc7f0daf19f24f38c29373a2ccad46157242a50f37809b1da3412a12e79ccc9c81264cfe9ad080997058fb61c4243cc32dbaa156b9'), Gx: BigInt('0x79a70b2b70400553ae7c9df416c792c61128751ac92969240c25a07d728bdc93e21f7787ed6972249de732f38496cd11698713093e9c04fc'), Gy: BigInt('0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffff80000000000000000000000000000000000000000000000000000001'), }); const shake256_114 = /* @__PURE__ */ (0, utils_js_1.createHasher)(() => sha3_js_1.shake256.create({ dkLen: 114 })); const shake256_64 = /* @__PURE__ */ (0, utils_js_1.createHasher)(() => sha3_js_1.shake256.create({ dkLen: 64 })); // prettier-ignore const _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4), _11n = BigInt(11); // prettier-ignore const _22n = BigInt(22), _44n = BigInt(44), _88n = BigInt(88), _223n = BigInt(223); // powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4. // Used for efficient square root calculation. // ((P-3)/4).toString(2) would produce bits [223x 1, 0, 222x 1] function ed448_pow_Pminus3div4(x) { const P = ed448_CURVE.p; const b2 = (x * x * x) % P; const b3 = (b2 * b2 * x) % P; const b6 = ((0, modular_ts_1.pow2)(b3, _3n, P) * b3) % P; const b9 = ((0, modular_ts_1.pow2)(b6, _3n, P) * b3) % P; const b11 = ((0, modular_ts_1.pow2)(b9, _2n, P) * b2) % P; const b22 = ((0, modular_ts_1.pow2)(b11, _11n, P) * b11) % P; const b44 = ((0, modular_ts_1.pow2)(b22, _22n, P) * b22) % P; const b88 = ((0, modular_ts_1.pow2)(b44, _44n, P) * b44) % P; const b176 = ((0, modular_ts_1.pow2)(b88, _88n, P) * b88) % P; const b220 = ((0, modular_ts_1.pow2)(b176, _44n, P) * b44) % P; const b222 = ((0, modular_ts_1.pow2)(b220, _2n, P) * b2) % P; const b223 = ((0, modular_ts_1.pow2)(b222, _1n, P) * x) % P; return ((0, modular_ts_1.pow2)(b223, _223n, P) * b222) % P; } function adjustScalarBytes(bytes) { // Section 5: Likewise, for X448, set the two least significant bits of the first byte to 0, bytes[0] &= 252; // 0b11111100 // and the most significant bit of the last byte to 1. bytes[55] |= 128; // 0b10000000 // NOTE: is NOOP for 56 bytes scalars (X25519/X448) bytes[56] = 0; // Byte outside of group (456 buts vs 448 bits) return bytes; } // Constant-time ratio of u to v. Allows to combine inversion and square root u/√v. // Uses algo from RFC8032 5.1.3. function uvRatio(u, v) { const P = ed448_CURVE.p; // https://www.rfc-editor.org/rfc/rfc8032#section-5.2.3 // To compute the square root of (u/v), the first step is to compute the // candidate root x = (u/v)^((p+1)/4). This can be done using the // following trick, to use a single modular powering for both the // inversion of v and the square root: // x = (u/v)^((p+1)/4) = u³v(u⁵v³)^((p-3)/4) (mod p) const u2v = (0, modular_ts_1.mod)(u * u * v, P); // u²v const u3v = (0, modular_ts_1.mod)(u2v * u, P); // u³v const u5v3 = (0, modular_ts_1.mod)(u3v * u2v * v, P); // u⁵v³ const root = ed448_pow_Pminus3div4(u5v3); const x = (0, modular_ts_1.mod)(u3v * root, P); // Verify that root is exists const x2 = (0, modular_ts_1.mod)(x * x, P); // x² // If vx² = u, the recovered x-coordinate is x. Otherwise, no // square root exists, and the decoding fails. return { isValid: (0, modular_ts_1.mod)(x2 * v, P) === u, value: x }; } // Finite field 2n**448n - 2n**224n - 1n // The value fits in 448 bits, but we use 456-bit (57-byte) elements because of bitflags. // - ed25519 fits in 255 bits, allowing using last 1 byte for specifying bit flag of point negation. // - ed448 fits in 448 bits. We can't use last 1 byte: we can only use a bit 224 in the middle. const Fp = /* @__PURE__ */ (() => (0, modular_ts_1.Field)(ed448_CURVE.p, { BITS: 456, isLE: true }))(); const Fn = /* @__PURE__ */ (() => (0, modular_ts_1.Field)(ed448_CURVE.n, { BITS: 456, isLE: true }))(); // decaf448 uses 448-bit (56-byte) keys const Fp448 = /* @__PURE__ */ (() => (0, modular_ts_1.Field)(ed448_CURVE.p, { BITS: 448, isLE: true }))(); const Fn448 = /* @__PURE__ */ (() => (0, modular_ts_1.Field)(ed448_CURVE.n, { BITS: 448, isLE: true }))(); // SHAKE256(dom4(phflag,context)||x, 114) function dom4(data, ctx, phflag) { if (ctx.length > 255) throw new Error('context must be smaller than 255, got: ' + ctx.length); return (0, utils_js_1.concatBytes)((0, utils_ts_1.asciiToBytes)('SigEd448'), new Uint8Array([phflag ? 1 : 0, ctx.length]), ctx, data); } // const ed448_eddsa_opts = { adjustScalarBytes, domain: dom4 }; // const ed448_Point = edwards(ed448_CURVE, { Fp, Fn, uvRatio }); const ED448_DEF = /* @__PURE__ */ (() => ({ ...ed448_CURVE, Fp, Fn, nBitLength: Fn.BITS, hash: shake256_114, adjustScalarBytes, domain: dom4, uvRatio, }))(); /** * ed448 EdDSA curve and methods. * @example * import { ed448 } from '@noble/curves/ed448'; * const { secretKey, publicKey } = ed448.keygen(); * const msg = new TextEncoder().encode('hello'); * const sig = ed448.sign(msg, secretKey); * const isValid = ed448.verify(sig, msg, publicKey); */ exports.ed448 = (0, edwards_ts_1.twistedEdwards)(ED448_DEF); // There is no ed448ctx, since ed448 supports ctx by default /** Prehashed version of ed448. Accepts already-hashed messages in sign() and verify(). */ exports.ed448ph = (() => (0, edwards_ts_1.twistedEdwards)({ ...ED448_DEF, prehash: shake256_64, }))(); /** * E448 curve, defined by NIST. * E448 != edwards448 used in ed448. * E448 is birationally equivalent to edwards448. */ exports.E448 = (0, edwards_ts_1.edwards)(E448_CURVE); /** * ECDH using curve448 aka x448. * x448 has 56-byte keys as per RFC 7748, while * ed448 has 57-byte keys as per RFC 8032. */ exports.x448 = (() => { const P = ed448_CURVE.p; return (0, montgomery_ts_1.montgomery)({ P, type: 'x448', powPminus2: (x) => { const Pminus3div4 = ed448_pow_Pminus3div4(x); const Pminus3 = (0, modular_ts_1.pow2)(Pminus3div4, _2n, P); return (0, modular_ts_1.mod)(Pminus3 * x, P); // Pminus3 * x = Pminus2 }, adjustScalarBytes, }); })(); // Hash To Curve Elligator2 Map const ELL2_C1 = /* @__PURE__ */ (() => (Fp.ORDER - BigInt(3)) / BigInt(4))(); // 1. c1 = (q - 3) / 4 # Integer arithmetic const ELL2_J = /* @__PURE__ */ BigInt(156326); function map_to_curve_elligator2_curve448(u) { let tv1 = Fp.sqr(u); // 1. tv1 = u^2 let e1 = Fp.eql(tv1, Fp.ONE); // 2. e1 = tv1 == 1 tv1 = Fp.cmov(tv1, Fp.ZERO, e1); // 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0 let xd = Fp.sub(Fp.ONE, tv1); // 4. xd = 1 - tv1 let x1n = Fp.neg(ELL2_J); // 5. x1n = -J let tv2 = Fp.sqr(xd); // 6. tv2 = xd^2 let gxd = Fp.mul(tv2, xd); // 7. gxd = tv2 * xd # gxd = xd^3 let gx1 = Fp.mul(tv1, Fp.neg(ELL2_J)); // 8. gx1 = -J * tv1 # x1n + J * xd gx1 = Fp.mul(gx1, x1n); // 9. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd gx1 = Fp.add(gx1, tv2); // 10. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2 gx1 = Fp.mul(gx1, x1n); // 11. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2 let tv3 = Fp.sqr(gxd); // 12. tv3 = gxd^2 tv2 = Fp.mul(gx1, gxd); // 13. tv2 = gx1 * gxd # gx1 * gxd tv3 = Fp.mul(tv3, tv2); // 14. tv3 = tv3 * tv2 # gx1 * gxd^3 let y1 = Fp.pow(tv3, ELL2_C1); // 15. y1 = tv3^c1 # (gx1 * gxd^3)^((p - 3) / 4) y1 = Fp.mul(y1, tv2); // 16. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4) let x2n = Fp.mul(x1n, Fp.neg(tv1)); // 17. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd let y2 = Fp.mul(y1, u); // 18. y2 = y1 * u y2 = Fp.cmov(y2, Fp.ZERO, e1); // 19. y2 = CMOV(y2, 0, e1) tv2 = Fp.sqr(y1); // 20. tv2 = y1^2 tv2 = Fp.mul(tv2, gxd); // 21. tv2 = tv2 * gxd let e2 = Fp.eql(tv2, gx1); // 22. e2 = tv2 == gx1 let xn = Fp.cmov(x2n, x1n, e2); // 23. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2 let y = Fp.cmov(y2, y1, e2); // 24. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2 let e3 = Fp.isOdd(y); // 25. e3 = sgn0(y) == 1 # Fix sign of y y = Fp.cmov(y, Fp.neg(y), e2 !== e3); // 26. y = CMOV(y, -y, e2 XOR e3) return { xn, xd, yn: y, yd: Fp.ONE }; // 27. return (xn, xd, y, 1) } function map_to_curve_elligator2_edwards448(u) { let { xn, xd, yn, yd } = map_to_curve_elligator2_curve448(u); // 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u) let xn2 = Fp.sqr(xn); // 2. xn2 = xn^2 let xd2 = Fp.sqr(xd); // 3. xd2 = xd^2 let xd4 = Fp.sqr(xd2); // 4. xd4 = xd2^2 let yn2 = Fp.sqr(yn); // 5. yn2 = yn^2 let yd2 = Fp.sqr(yd); // 6. yd2 = yd^2 let xEn = Fp.sub(xn2, xd2); // 7. xEn = xn2 - xd2 let tv2 = Fp.sub(xEn, xd2); // 8. tv2 = xEn - xd2 xEn = Fp.mul(xEn, xd2); // 9. xEn = xEn * xd2 xEn = Fp.mul(xEn, yd); // 10. xEn = xEn * yd xEn = Fp.mul(xEn, yn); // 11. xEn = xEn * yn xEn = Fp.mul(xEn, _4n); // 12. xEn = xEn * 4 tv2 = Fp.mul(tv2, xn2); // 13. tv2 = tv2 * xn2 tv2 = Fp.mul(tv2, yd2); // 14. tv2 = tv2 * yd2 let tv3 = Fp.mul(yn2, _4n); // 15. tv3 = 4 * yn2 let tv1 = Fp.add(tv3, yd2); // 16. tv1 = tv3 + yd2 tv1 = Fp.mul(tv1, xd4); // 17. tv1 = tv1 * xd4 let xEd = Fp.add(tv1, tv2); // 18. xEd = tv1 + tv2 tv2 = Fp.mul(tv2, xn); // 19. tv2 = tv2 * xn let tv4 = Fp.mul(xn, xd4); // 20. tv4 = xn * xd4 let yEn = Fp.sub(tv3, yd2); // 21. yEn = tv3 - yd2 yEn = Fp.mul(yEn, tv4); // 22. yEn = yEn * tv4 yEn = Fp.sub(yEn, tv2); // 23. yEn = yEn - tv2 tv1 = Fp.add(xn2, xd2); // 24. tv1 = xn2 + xd2 tv1 = Fp.mul(tv1, xd2); // 25. tv1 = tv1 * xd2 tv1 = Fp.mul(tv1, xd); // 26. tv1 = tv1 * xd tv1 = Fp.mul(tv1, yn2); // 27. tv1 = tv1 * yn2 tv1 = Fp.mul(tv1, BigInt(-2)); // 28. tv1 = -2 * tv1 let yEd = Fp.add(tv2, tv1); // 29. yEd = tv2 + tv1 tv4 = Fp.mul(tv4, yd2); // 30. tv4 = tv4 * yd2 yEd = Fp.add(yEd, tv4); // 31. yEd = yEd + tv4 tv1 = Fp.mul(xEd, yEd); // 32. tv1 = xEd * yEd let e = Fp.eql(tv1, Fp.ZERO); // 33. e = tv1 == 0 xEn = Fp.cmov(xEn, Fp.ZERO, e); // 34. xEn = CMOV(xEn, 0, e) xEd = Fp.cmov(xEd, Fp.ONE, e); // 35. xEd = CMOV(xEd, 1, e) yEn = Fp.cmov(yEn, Fp.ONE, e); // 36. yEn = CMOV(yEn, 1, e) yEd = Fp.cmov(yEd, Fp.ONE, e); // 37. yEd = CMOV(yEd, 1, e) const inv = (0, modular_ts_1.FpInvertBatch)(Fp, [xEd, yEd], true); // batch division return { x: Fp.mul(xEn, inv[0]), y: Fp.mul(yEn, inv[1]) }; // 38. return (xEn, xEd, yEn, yEd) } /** Hashing / encoding to ed448 points / field. RFC 9380 methods. */ exports.ed448_hasher = (() => (0, hash_to_curve_ts_1.createHasher)(exports.ed448.Point, (scalars) => map_to_curve_elligator2_edwards448(scalars[0]), { DST: 'edwards448_XOF:SHAKE256_ELL2_RO_', encodeDST: 'edwards448_XOF:SHAKE256_ELL2_NU_', p: Fp.ORDER, m: 1, k: 224, expand: 'xof', hash: sha3_js_1.shake256, }))(); // 1-d const ONE_MINUS_D = /* @__PURE__ */ BigInt('39082'); // 1-2d const ONE_MINUS_TWO_D = /* @__PURE__ */ BigInt('78163'); // √(-d) const SQRT_MINUS_D = /* @__PURE__ */ BigInt('98944233647732219769177004876929019128417576295529901074099889598043702116001257856802131563896515373927712232092845883226922417596214'); // 1 / √(-d) const INVSQRT_MINUS_D = /* @__PURE__ */ BigInt('315019913931389607337177038330951043522456072897266928557328499619017160722351061360252776265186336876723201881398623946864393857820716'); // Calculates 1/√(number) const invertSqrt = (number) => uvRatio(_1n, number); /** * Elligator map for hash-to-curve of decaf448. * Described in [RFC9380](https://www.rfc-editor.org/rfc/rfc9380#appendix-C) * and [RFC9496](https://www.rfc-editor.org/rfc/rfc9496#name-element-derivation-2). */ function calcElligatorDecafMap(r0) { const { d } = ed448_CURVE; const P = Fp.ORDER; const mod = (n) => Fp.create(n); const r = mod(-(r0 * r0)); // 1 const u0 = mod(d * (r - _1n)); // 2 const u1 = mod((u0 + _1n) * (u0 - r)); // 3 const { isValid: was_square, value: v } = uvRatio(ONE_MINUS_TWO_D, mod((r + _1n) * u1)); // 4 let v_prime = v; // 5 if (!was_square) v_prime = mod(r0 * v); let sgn = _1n; // 6 if (!was_square) sgn = mod(-_1n); const s = mod(v_prime * (r + _1n)); // 7 let s_abs = s; if ((0, modular_ts_1.isNegativeLE)(s, P)) s_abs = mod(-s); const s2 = s * s; const W0 = mod(s_abs * _2n); // 8 const W1 = mod(s2 + _1n); // 9 const W2 = mod(s2 - _1n); // 10 const W3 = mod(v_prime * s * (r - _1n) * ONE_MINUS_TWO_D + sgn); // 11 return new exports.ed448.Point(mod(W0 * W3), mod(W2 * W1), mod(W1 * W3), mod(W0 * W2)); } function decaf448_map(bytes) { (0, utils_js_1.abytes)(bytes, 112); const skipValidation = true; // Note: Similar to the field element decoding described in // [RFC7748], and unlike the field element decoding described in // Section 5.3.1, non-canonical values are accepted. const r1 = Fp448.create(Fp448.fromBytes(bytes.subarray(0, 56), skipValidation)); const R1 = calcElligatorDecafMap(r1); const r2 = Fp448.create(Fp448.fromBytes(bytes.subarray(56, 112), skipValidation)); const R2 = calcElligatorDecafMap(r2); return new _DecafPoint(R1.add(R2)); } /** * Each ed448/EdwardsPoint has 4 different equivalent points. This can be * a source of bugs for protocols like ring signatures. Decaf was created to solve this. * Decaf point operates in X:Y:Z:T extended coordinates like EdwardsPoint, * but it should work in its own namespace: do not combine those two. * See [RFC9496](https://www.rfc-editor.org/rfc/rfc9496). */ class _DecafPoint extends edwards_ts_1.PrimeEdwardsPoint { constructor(ep) { super(ep); } static fromAffine(ap) { return new _DecafPoint(exports.ed448.Point.fromAffine(ap)); } assertSame(other) { if (!(other instanceof _DecafPoint)) throw new Error('DecafPoint expected'); } init(ep) { return new _DecafPoint(ep); } /** @deprecated use `import { decaf448_hasher } from '@noble/curves/ed448.js';` */ static hashToCurve(hex) { return decaf448_map((0, utils_ts_1.ensureBytes)('decafHash', hex, 112)); } static fromBytes(bytes) { (0, utils_js_1.abytes)(bytes, 56); const { d } = ed448_CURVE; const P = Fp.ORDER; const mod = (n) => Fp448.create(n); const s = Fp448.fromBytes(bytes); // 1. Check that s_bytes is the canonical encoding of a field element, or else abort. // 2. Check that s is non-negative, or else abort if (!(0, utils_ts_1.equalBytes)(Fn448.toBytes(s), bytes) || (0, modular_ts_1.isNegativeLE)(s, P)) throw new Error('invalid decaf448 encoding 1'); const s2 = mod(s * s); // 1 const u1 = mod(_1n + s2); // 2 const u1sq = mod(u1 * u1); const u2 = mod(u1sq - _4n * d * s2); // 3 const { isValid, value: invsqrt } = invertSqrt(mod(u2 * u1sq)); // 4 let u3 = mod((s + s) * invsqrt * u1 * SQRT_MINUS_D); // 5 if ((0, modular_ts_1.isNegativeLE)(u3, P)) u3 = mod(-u3); const x = mod(u3 * invsqrt * u2 * INVSQRT_MINUS_D); // 6 const y = mod((_1n - s2) * invsqrt * u1); // 7 const t = mod(x * y); // 8 if (!isValid) throw new Error('invalid decaf448 encoding 2'); return new _DecafPoint(new exports.ed448.Point(x, y, _1n, t)); } /** * Converts decaf-encoded string to decaf point. * Described in [RFC9496](https://www.rfc-editor.org/rfc/rfc9496#name-decode-2). * @param hex Decaf-encoded 56 bytes. Not every 56-byte string is valid decaf encoding */ static fromHex(hex) { return _DecafPoint.fromBytes((0, utils_ts_1.ensureBytes)('decafHex', hex, 56)); } /** @deprecated use `import { pippenger } from '@noble/curves/abstract/curve.js';` */ static msm(points, scalars) { return (0, curve_ts_1.pippenger)(_DecafPoint, Fn, points, scalars); } /** * Encodes decaf point to Uint8Array. * Described in [RFC9496](https://www.rfc-editor.org/rfc/rfc9496#name-encode-2). */ toBytes() { const { X, Z, T } = this.ep; const P = Fp.ORDER; const mod = (n) => Fp.create(n); const u1 = mod(mod(X + T) * mod(X - T)); // 1 const x2 = mod(X * X); const { value: invsqrt } = invertSqrt(mod(u1 * ONE_MINUS_D * x2)); // 2 let ratio = mod(invsqrt * u1 * SQRT_MINUS_D); // 3 if ((0, modular_ts_1.isNegativeLE)(ratio, P)) ratio = mod(-ratio); const u2 = mod(INVSQRT_MINUS_D * ratio * Z - T); // 4 let s = mod(ONE_MINUS_D * invsqrt * X * u2); // 5 if ((0, modular_ts_1.isNegativeLE)(s, P)) s = mod(-s); return Fn448.toBytes(s); } /** * Compare one point to another. * Described in [RFC9496](https://www.rfc-editor.org/rfc/rfc9496#name-equals-2). */ equals(other) { this.assertSame(other); const { X: X1, Y: Y1 } = this.ep; const { X: X2, Y: Y2 } = other.ep; // (x1 * y2 == y1 * x2) return Fp.create(X1 * Y2) === Fp.create(Y1 * X2); } is0() { return this.equals(_DecafPoint.ZERO); } } // The following gymnastics is done because typescript strips comments otherwise // prettier-ignore _DecafPoint.BASE = /* @__PURE__ */ (() => new _DecafPoint(exports.ed448.Point.BASE).multiplyUnsafe(_2n))(); // prettier-ignore _DecafPoint.ZERO = /* @__PURE__ */ (() => new _DecafPoint(exports.ed448.Point.ZERO))(); // prettier-ignore _DecafPoint.Fp = /* @__PURE__ */ (() => Fp448)(); // prettier-ignore _DecafPoint.Fn = /* @__PURE__ */ (() => Fn448)(); exports.decaf448 = { Point: _DecafPoint }; /** Hashing to decaf448 points / field. RFC 9380 methods. */ exports.decaf448_hasher = { hashToCurve(msg, options) { const DST = options?.DST || 'decaf448_XOF:SHAKE256_D448MAP_RO_'; return decaf448_map((0, hash_to_curve_ts_1.expand_message_xof)(msg, DST, 112, 224, sha3_js_1.shake256)); }, // Warning: has big modulo bias of 2^-64. // RFC is invalid. RFC says "use 64-byte xof", while for 2^-112 bias // it must use 84-byte xof (56+56/2), not 64. hashToScalar(msg, options = { DST: hash_to_curve_ts_1._DST_scalar }) { // Can't use `Fn448.fromBytes()`. 64-byte input => 56-byte field element const xof = (0, hash_to_curve_ts_1.expand_message_xof)(msg, options.DST, 64, 256, sha3_js_1.shake256); return Fn448.create((0, utils_ts_1.bytesToNumberLE)(xof)); }, }; // export const decaf448_oprf: OPRF = createORPF({ // name: 'decaf448-SHAKE256', // Point: DecafPoint, // hash: (msg: Uint8Array) => shake256(msg, { dkLen: 64 }), // hashToGroup: decaf448_hasher.hashToCurve, // hashToScalar: decaf448_hasher.hashToScalar, // }); /** * Weird / bogus points, useful for debugging. * Unlike ed25519, there is no ed448 generator point which can produce full T subgroup. * Instead, there is a Klein four-group, which spans over 2 independent 2-torsion points: * (0, 1), (0, -1), (-1, 0), (1, 0). */ exports.ED448_TORSION_SUBGROUP = [ '010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', 'fefffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff00', '000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000080', ]; /** @deprecated use `decaf448.Point` */ exports.DecafPoint = _DecafPoint; /** @deprecated use `import { ed448_hasher } from '@noble/curves/ed448.js';` */ exports.hashToCurve = (() => exports.ed448_hasher.hashToCurve)(); /** @deprecated use `import { ed448_hasher } from '@noble/curves/ed448.js';` */ exports.encodeToCurve = (() => exports.ed448_hasher.encodeToCurve)(); /** @deprecated use `import { decaf448_hasher } from '@noble/curves/ed448.js';` */ exports.hashToDecaf448 = (() => exports.decaf448_hasher.hashToCurve)(); /** @deprecated use `import { decaf448_hasher } from '@noble/curves/ed448.js';` */ exports.hash_to_decaf448 = (() => exports.decaf448_hasher.hashToCurve)(); /** @deprecated use `ed448.utils.toMontgomery` */ function edwardsToMontgomeryPub(edwardsPub) { return exports.ed448.utils.toMontgomery((0, utils_ts_1.ensureBytes)('pub', edwardsPub)); } /** @deprecated use `ed448.utils.toMontgomery` */ exports.edwardsToMontgomery = edwardsToMontgomeryPub; //# sourceMappingURL=ed448.js.map