"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports._DST_scalar = void 0; exports.expand_message_xmd = expand_message_xmd; exports.expand_message_xof = expand_message_xof; exports.hash_to_field = hash_to_field; exports.isogenyMap = isogenyMap; exports.createHasher = createHasher; const utils_ts_1 = require("../utils.js"); const modular_ts_1 = require("./modular.js"); // Octet Stream to Integer. "spec" implementation of os2ip is 2.5x slower vs bytesToNumberBE. const os2ip = utils_ts_1.bytesToNumberBE; // Integer to Octet Stream (numberToBytesBE) function i2osp(value, length) { anum(value); anum(length); if (value < 0 || value >= 1 << (8 * length)) throw new Error('invalid I2OSP input: ' + value); const res = Array.from({ length }).fill(0); for (let i = length - 1; i >= 0; i--) { res[i] = value & 0xff; value >>>= 8; } return new Uint8Array(res); } function strxor(a, b) { const arr = new Uint8Array(a.length); for (let i = 0; i < a.length; i++) { arr[i] = a[i] ^ b[i]; } return arr; } function anum(item) { if (!Number.isSafeInteger(item)) throw new Error('number expected'); } function normDST(DST) { if (!(0, utils_ts_1.isBytes)(DST) && typeof DST !== 'string') throw new Error('DST must be Uint8Array or string'); return typeof DST === 'string' ? (0, utils_ts_1.utf8ToBytes)(DST) : DST; } /** * Produces a uniformly random byte string using a cryptographic hash function H that outputs b bits. * [RFC 9380 5.3.1](https://www.rfc-editor.org/rfc/rfc9380#section-5.3.1). */ function expand_message_xmd(msg, DST, lenInBytes, H) { (0, utils_ts_1.abytes)(msg); anum(lenInBytes); DST = normDST(DST); // https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3 if (DST.length > 255) DST = H((0, utils_ts_1.concatBytes)((0, utils_ts_1.utf8ToBytes)('H2C-OVERSIZE-DST-'), DST)); const { outputLen: b_in_bytes, blockLen: r_in_bytes } = H; const ell = Math.ceil(lenInBytes / b_in_bytes); if (lenInBytes > 65535 || ell > 255) throw new Error('expand_message_xmd: invalid lenInBytes'); const DST_prime = (0, utils_ts_1.concatBytes)(DST, i2osp(DST.length, 1)); const Z_pad = i2osp(0, r_in_bytes); const l_i_b_str = i2osp(lenInBytes, 2); // len_in_bytes_str const b = new Array(ell); const b_0 = H((0, utils_ts_1.concatBytes)(Z_pad, msg, l_i_b_str, i2osp(0, 1), DST_prime)); b[0] = H((0, utils_ts_1.concatBytes)(b_0, i2osp(1, 1), DST_prime)); for (let i = 1; i <= ell; i++) { const args = [strxor(b_0, b[i - 1]), i2osp(i + 1, 1), DST_prime]; b[i] = H((0, utils_ts_1.concatBytes)(...args)); } const pseudo_random_bytes = (0, utils_ts_1.concatBytes)(...b); return pseudo_random_bytes.slice(0, lenInBytes); } /** * Produces a uniformly random byte string using an extendable-output function (XOF) H. * 1. The collision resistance of H MUST be at least k bits. * 2. H MUST be an XOF that has been proved indifferentiable from * a random oracle under a reasonable cryptographic assumption. * [RFC 9380 5.3.2](https://www.rfc-editor.org/rfc/rfc9380#section-5.3.2). */ function expand_message_xof(msg, DST, lenInBytes, k, H) { (0, utils_ts_1.abytes)(msg); anum(lenInBytes); DST = normDST(DST); // https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3 // DST = H('H2C-OVERSIZE-DST-' || a_very_long_DST, Math.ceil((lenInBytes * k) / 8)); if (DST.length > 255) { const dkLen = Math.ceil((2 * k) / 8); DST = H.create({ dkLen }).update((0, utils_ts_1.utf8ToBytes)('H2C-OVERSIZE-DST-')).update(DST).digest(); } if (lenInBytes > 65535 || DST.length > 255) throw new Error('expand_message_xof: invalid lenInBytes'); return (H.create({ dkLen: lenInBytes }) .update(msg) .update(i2osp(lenInBytes, 2)) // 2. DST_prime = DST || I2OSP(len(DST), 1) .update(DST) .update(i2osp(DST.length, 1)) .digest()); } /** * Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F. * [RFC 9380 5.2](https://www.rfc-editor.org/rfc/rfc9380#section-5.2). * @param msg a byte string containing the message to hash * @param count the number of elements of F to output * @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above * @returns [u_0, ..., u_(count - 1)], a list of field elements. */ function hash_to_field(msg, count, options) { (0, utils_ts_1._validateObject)(options, { p: 'bigint', m: 'number', k: 'number', hash: 'function', }); const { p, k, m, hash, expand, DST } = options; if (!(0, utils_ts_1.isHash)(options.hash)) throw new Error('expected valid hash'); (0, utils_ts_1.abytes)(msg); anum(count); const log2p = p.toString(2).length; const L = Math.ceil((log2p + k) / 8); // section 5.1 of ietf draft link above const len_in_bytes = count * m * L; let prb; // pseudo_random_bytes if (expand === 'xmd') { prb = expand_message_xmd(msg, DST, len_in_bytes, hash); } else if (expand === 'xof') { prb = expand_message_xof(msg, DST, len_in_bytes, k, hash); } else if (expand === '_internal_pass') { // for internal tests only prb = msg; } else { throw new Error('expand must be "xmd" or "xof"'); } const u = new Array(count); for (let i = 0; i < count; i++) { const e = new Array(m); for (let j = 0; j < m; j++) { const elm_offset = L * (j + i * m); const tv = prb.subarray(elm_offset, elm_offset + L); e[j] = (0, modular_ts_1.mod)(os2ip(tv), p); } u[i] = e; } return u; } function isogenyMap(field, map) { // Make same order as in spec const coeff = map.map((i) => Array.from(i).reverse()); return (x, y) => { const [xn, xd, yn, yd] = coeff.map((val) => val.reduce((acc, i) => field.add(field.mul(acc, x), i))); // 6.6.3 // Exceptional cases of iso_map are inputs that cause the denominator of // either rational function to evaluate to zero; such cases MUST return // the identity point on E. const [xd_inv, yd_inv] = (0, modular_ts_1.FpInvertBatch)(field, [xd, yd], true); x = field.mul(xn, xd_inv); // xNum / xDen y = field.mul(y, field.mul(yn, yd_inv)); // y * (yNum / yDev) return { x, y }; }; } exports._DST_scalar = (0, utils_ts_1.utf8ToBytes)('HashToScalar-'); /** Creates hash-to-curve methods from EC Point and mapToCurve function. See {@link H2CHasher}. */ function createHasher(Point, mapToCurve, defaults) { if (typeof mapToCurve !== 'function') throw new Error('mapToCurve() must be defined'); function map(num) { return Point.fromAffine(mapToCurve(num)); } function clear(initial) { const P = initial.clearCofactor(); if (P.equals(Point.ZERO)) return Point.ZERO; // zero will throw in assert P.assertValidity(); return P; } return { defaults, hashToCurve(msg, options) { const opts = Object.assign({}, defaults, options); const u = hash_to_field(msg, 2, opts); const u0 = map(u[0]); const u1 = map(u[1]); return clear(u0.add(u1)); }, encodeToCurve(msg, options) { const optsDst = defaults.encodeDST ? { DST: defaults.encodeDST } : {}; const opts = Object.assign({}, defaults, optsDst, options); const u = hash_to_field(msg, 1, opts); const u0 = map(u[0]); return clear(u0); }, /** See {@link H2CHasher} */ mapToCurve(scalars) { if (!Array.isArray(scalars)) throw new Error('expected array of bigints'); for (const i of scalars) if (typeof i !== 'bigint') throw new Error('expected array of bigints'); return clear(map(scalars)); }, // hash_to_scalar can produce 0: https://www.rfc-editor.org/errata/eid8393 // RFC 9380, draft-irtf-cfrg-bbs-signatures-08 hashToScalar(msg, options) { // @ts-ignore const N = Point.Fn.ORDER; const opts = Object.assign({}, defaults, { p: N, m: 1, DST: exports._DST_scalar }, options); return hash_to_field(msg, 1, opts)[0][0]; }, }; } //# sourceMappingURL=hash-to-curve.js.map