"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.wNAF = void 0; exports.negateCt = negateCt; exports.normalizeZ = normalizeZ; exports.mulEndoUnsafe = mulEndoUnsafe; exports.pippenger = pippenger; exports.precomputeMSMUnsafe = precomputeMSMUnsafe; exports.validateBasic = validateBasic; exports._createCurveFields = _createCurveFields; /** * Methods for elliptic curve multiplication by scalars. * Contains wNAF, pippenger. * @module */ /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ const utils_ts_1 = require("../utils.js"); const modular_ts_1 = require("./modular.js"); const _0n = BigInt(0); const _1n = BigInt(1); function negateCt(condition, item) { const neg = item.negate(); return condition ? neg : item; } /** * Takes a bunch of Projective Points but executes only one * inversion on all of them. Inversion is very slow operation, * so this improves performance massively. * Optimization: converts a list of projective points to a list of identical points with Z=1. */ function normalizeZ(c, points) { const invertedZs = (0, modular_ts_1.FpInvertBatch)(c.Fp, points.map((p) => p.Z)); return points.map((p, i) => c.fromAffine(p.toAffine(invertedZs[i]))); } function validateW(W, bits) { if (!Number.isSafeInteger(W) || W <= 0 || W > bits) throw new Error('invalid window size, expected [1..' + bits + '], got W=' + W); } function calcWOpts(W, scalarBits) { validateW(W, scalarBits); const windows = Math.ceil(scalarBits / W) + 1; // W=8 33. Not 32, because we skip zero const windowSize = 2 ** (W - 1); // W=8 128. Not 256, because we skip zero const maxNumber = 2 ** W; // W=8 256 const mask = (0, utils_ts_1.bitMask)(W); // W=8 255 == mask 0b11111111 const shiftBy = BigInt(W); // W=8 8 return { windows, windowSize, mask, maxNumber, shiftBy }; } function calcOffsets(n, window, wOpts) { const { windowSize, mask, maxNumber, shiftBy } = wOpts; let wbits = Number(n & mask); // extract W bits. let nextN = n >> shiftBy; // shift number by W bits. // What actually happens here: // const highestBit = Number(mask ^ (mask >> 1n)); // let wbits2 = wbits - 1; // skip zero // if (wbits2 & highestBit) { wbits2 ^= Number(mask); // (~); // split if bits > max: +224 => 256-32 if (wbits > windowSize) { // we skip zero, which means instead of `>= size-1`, we do `> size` wbits -= maxNumber; // -32, can be maxNumber - wbits, but then we need to set isNeg here. nextN += _1n; // +256 (carry) } const offsetStart = window * windowSize; const offset = offsetStart + Math.abs(wbits) - 1; // -1 because we skip zero const isZero = wbits === 0; // is current window slice a 0? const isNeg = wbits < 0; // is current window slice negative? const isNegF = window % 2 !== 0; // fake random statement for noise const offsetF = offsetStart; // fake offset for noise return { nextN, offset, isZero, isNeg, isNegF, offsetF }; } function validateMSMPoints(points, c) { if (!Array.isArray(points)) throw new Error('array expected'); points.forEach((p, i) => { if (!(p instanceof c)) throw new Error('invalid point at index ' + i); }); } function validateMSMScalars(scalars, field) { if (!Array.isArray(scalars)) throw new Error('array of scalars expected'); scalars.forEach((s, i) => { if (!field.isValid(s)) throw new Error('invalid scalar at index ' + i); }); } // Since points in different groups cannot be equal (different object constructor), // we can have single place to store precomputes. // Allows to make points frozen / immutable. const pointPrecomputes = new WeakMap(); const pointWindowSizes = new WeakMap(); function getW(P) { // To disable precomputes: // return 1; return pointWindowSizes.get(P) || 1; } function assert0(n) { if (n !== _0n) throw new Error('invalid wNAF'); } /** * Elliptic curve multiplication of Point by scalar. Fragile. * Table generation takes **30MB of ram and 10ms on high-end CPU**, * but may take much longer on slow devices. Actual generation will happen on * first call of `multiply()`. By default, `BASE` point is precomputed. * * Scalars should always be less than curve order: this should be checked inside of a curve itself. * Creates precomputation tables for fast multiplication: * - private scalar is split by fixed size windows of W bits * - every window point is collected from window's table & added to accumulator * - since windows are different, same point inside tables won't be accessed more than once per calc * - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar) * - +1 window is neccessary for wNAF * - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication * * @todo Research returning 2d JS array of windows, instead of a single window. * This would allow windows to be in different memory locations */ class wNAF { // Parametrized with a given Point class (not individual point) constructor(Point, bits) { this.BASE = Point.BASE; this.ZERO = Point.ZERO; this.Fn = Point.Fn; this.bits = bits; } // non-const time multiplication ladder _unsafeLadder(elm, n, p = this.ZERO) { let d = elm; while (n > _0n) { if (n & _1n) p = p.add(d); d = d.double(); n >>= _1n; } return p; } /** * Creates a wNAF precomputation window. Used for caching. * Default window size is set by `utils.precompute()` and is equal to 8. * Number of precomputed points depends on the curve size: * 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where: * - 𝑊 is the window size * - 𝑛 is the bitlength of the curve order. * For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224. * @param point Point instance * @param W window size * @returns precomputed point tables flattened to a single array */ precomputeWindow(point, W) { const { windows, windowSize } = calcWOpts(W, this.bits); const points = []; let p = point; let base = p; for (let window = 0; window < windows; window++) { base = p; points.push(base); // i=1, bc we skip 0 for (let i = 1; i < windowSize; i++) { base = base.add(p); points.push(base); } p = base.double(); } return points; } /** * Implements ec multiplication using precomputed tables and w-ary non-adjacent form. * More compact implementation: * https://github.com/paulmillr/noble-secp256k1/blob/47cb1669b6e506ad66b35fe7d76132ae97465da2/index.ts#L502-L541 * @returns real and fake (for const-time) points */ wNAF(W, precomputes, n) { // Scalar should be smaller than field order if (!this.Fn.isValid(n)) throw new Error('invalid scalar'); // Accumulators let p = this.ZERO; let f = this.BASE; // This code was first written with assumption that 'f' and 'p' will never be infinity point: // since each addition is multiplied by 2 ** W, it cannot cancel each other. However, // there is negate now: it is possible that negated element from low value // would be the same as high element, which will create carry into next window. // It's not obvious how this can fail, but still worth investigating later. const wo = calcWOpts(W, this.bits); for (let window = 0; window < wo.windows; window++) { // (n === _0n) is handled and not early-exited. isEven and offsetF are used for noise const { nextN, offset, isZero, isNeg, isNegF, offsetF } = calcOffsets(n, window, wo); n = nextN; if (isZero) { // bits are 0: add garbage to fake point // Important part for const-time getPublicKey: add random "noise" point to f. f = f.add(negateCt(isNegF, precomputes[offsetF])); } else { // bits are 1: add to result point p = p.add(negateCt(isNeg, precomputes[offset])); } } assert0(n); // Return both real and fake points: JIT won't eliminate f. // At this point there is a way to F be infinity-point even if p is not, // which makes it less const-time: around 1 bigint multiply. return { p, f }; } /** * Implements ec unsafe (non const-time) multiplication using precomputed tables and w-ary non-adjacent form. * @param acc accumulator point to add result of multiplication * @returns point */ wNAFUnsafe(W, precomputes, n, acc = this.ZERO) { const wo = calcWOpts(W, this.bits); for (let window = 0; window < wo.windows; window++) { if (n === _0n) break; // Early-exit, skip 0 value const { nextN, offset, isZero, isNeg } = calcOffsets(n, window, wo); n = nextN; if (isZero) { // Window bits are 0: skip processing. // Move to next window. continue; } else { const item = precomputes[offset]; acc = acc.add(isNeg ? item.negate() : item); // Re-using acc allows to save adds in MSM } } assert0(n); return acc; } getPrecomputes(W, point, transform) { // Calculate precomputes on a first run, reuse them after let comp = pointPrecomputes.get(point); if (!comp) { comp = this.precomputeWindow(point, W); if (W !== 1) { // Doing transform outside of if brings 15% perf hit if (typeof transform === 'function') comp = transform(comp); pointPrecomputes.set(point, comp); } } return comp; } cached(point, scalar, transform) { const W = getW(point); return this.wNAF(W, this.getPrecomputes(W, point, transform), scalar); } unsafe(point, scalar, transform, prev) { const W = getW(point); if (W === 1) return this._unsafeLadder(point, scalar, prev); // For W=1 ladder is ~x2 faster return this.wNAFUnsafe(W, this.getPrecomputes(W, point, transform), scalar, prev); } // We calculate precomputes for elliptic curve point multiplication // using windowed method. This specifies window size and // stores precomputed values. Usually only base point would be precomputed. createCache(P, W) { validateW(W, this.bits); pointWindowSizes.set(P, W); pointPrecomputes.delete(P); } hasCache(elm) { return getW(elm) !== 1; } } exports.wNAF = wNAF; /** * Endomorphism-specific multiplication for Koblitz curves. * Cost: 128 dbl, 0-256 adds. */ function mulEndoUnsafe(Point, point, k1, k2) { let acc = point; let p1 = Point.ZERO; let p2 = Point.ZERO; while (k1 > _0n || k2 > _0n) { if (k1 & _1n) p1 = p1.add(acc); if (k2 & _1n) p2 = p2.add(acc); acc = acc.double(); k1 >>= _1n; k2 >>= _1n; } return { p1, p2 }; } /** * Pippenger algorithm for multi-scalar multiplication (MSM, Pa + Qb + Rc + ...). * 30x faster vs naive addition on L=4096, 10x faster than precomputes. * For N=254bit, L=1, it does: 1024 ADD + 254 DBL. For L=5: 1536 ADD + 254 DBL. * Algorithmically constant-time (for same L), even when 1 point + scalar, or when scalar = 0. * @param c Curve Point constructor * @param fieldN field over CURVE.N - important that it's not over CURVE.P * @param points array of L curve points * @param scalars array of L scalars (aka secret keys / bigints) */ function pippenger(c, fieldN, points, scalars) { // If we split scalars by some window (let's say 8 bits), every chunk will only // take 256 buckets even if there are 4096 scalars, also re-uses double. // TODO: // - https://eprint.iacr.org/2024/750.pdf // - https://tches.iacr.org/index.php/TCHES/article/view/10287 // 0 is accepted in scalars validateMSMPoints(points, c); validateMSMScalars(scalars, fieldN); const plength = points.length; const slength = scalars.length; if (plength !== slength) throw new Error('arrays of points and scalars must have equal length'); // if (plength === 0) throw new Error('array must be of length >= 2'); const zero = c.ZERO; const wbits = (0, utils_ts_1.bitLen)(BigInt(plength)); let windowSize = 1; // bits if (wbits > 12) windowSize = wbits - 3; else if (wbits > 4) windowSize = wbits - 2; else if (wbits > 0) windowSize = 2; const MASK = (0, utils_ts_1.bitMask)(windowSize); const buckets = new Array(Number(MASK) + 1).fill(zero); // +1 for zero array const lastBits = Math.floor((fieldN.BITS - 1) / windowSize) * windowSize; let sum = zero; for (let i = lastBits; i >= 0; i -= windowSize) { buckets.fill(zero); for (let j = 0; j < slength; j++) { const scalar = scalars[j]; const wbits = Number((scalar >> BigInt(i)) & MASK); buckets[wbits] = buckets[wbits].add(points[j]); } let resI = zero; // not using this will do small speed-up, but will lose ct // Skip first bucket, because it is zero for (let j = buckets.length - 1, sumI = zero; j > 0; j--) { sumI = sumI.add(buckets[j]); resI = resI.add(sumI); } sum = sum.add(resI); if (i !== 0) for (let j = 0; j < windowSize; j++) sum = sum.double(); } return sum; } /** * Precomputed multi-scalar multiplication (MSM, Pa + Qb + Rc + ...). * @param c Curve Point constructor * @param fieldN field over CURVE.N - important that it's not over CURVE.P * @param points array of L curve points * @returns function which multiplies points with scaars */ function precomputeMSMUnsafe(c, fieldN, points, windowSize) { /** * Performance Analysis of Window-based Precomputation * * Base Case (256-bit scalar, 8-bit window): * - Standard precomputation requires: * - 31 additions per scalar × 256 scalars = 7,936 ops * - Plus 255 summary additions = 8,191 total ops * Note: Summary additions can be optimized via accumulator * * Chunked Precomputation Analysis: * - Using 32 chunks requires: * - 255 additions per chunk * - 256 doublings * - Total: (255 × 32) + 256 = 8,416 ops * * Memory Usage Comparison: * Window Size | Standard Points | Chunked Points * ------------|-----------------|--------------- * 4-bit | 520 | 15 * 8-bit | 4,224 | 255 * 10-bit | 13,824 | 1,023 * 16-bit | 557,056 | 65,535 * * Key Advantages: * 1. Enables larger window sizes due to reduced memory overhead * 2. More efficient for smaller scalar counts: * - 16 chunks: (16 × 255) + 256 = 4,336 ops * - ~2x faster than standard 8,191 ops * * Limitations: * - Not suitable for plain precomputes (requires 256 constant doublings) * - Performance degrades with larger scalar counts: * - Optimal for ~256 scalars * - Less efficient for 4096+ scalars (Pippenger preferred) */ validateW(windowSize, fieldN.BITS); validateMSMPoints(points, c); const zero = c.ZERO; const tableSize = 2 ** windowSize - 1; // table size (without zero) const chunks = Math.ceil(fieldN.BITS / windowSize); // chunks of item const MASK = (0, utils_ts_1.bitMask)(windowSize); const tables = points.map((p) => { const res = []; for (let i = 0, acc = p; i < tableSize; i++) { res.push(acc); acc = acc.add(p); } return res; }); return (scalars) => { validateMSMScalars(scalars, fieldN); if (scalars.length > points.length) throw new Error('array of scalars must be smaller than array of points'); let res = zero; for (let i = 0; i < chunks; i++) { // No need to double if accumulator is still zero. if (res !== zero) for (let j = 0; j < windowSize; j++) res = res.double(); const shiftBy = BigInt(chunks * windowSize - (i + 1) * windowSize); for (let j = 0; j < scalars.length; j++) { const n = scalars[j]; const curr = Number((n >> shiftBy) & MASK); if (!curr) continue; // skip zero scalars chunks res = res.add(tables[j][curr - 1]); } } return res; }; } // TODO: remove /** @deprecated */ function validateBasic(curve) { (0, modular_ts_1.validateField)(curve.Fp); (0, utils_ts_1.validateObject)(curve, { n: 'bigint', h: 'bigint', Gx: 'field', Gy: 'field', }, { nBitLength: 'isSafeInteger', nByteLength: 'isSafeInteger', }); // Set defaults return Object.freeze({ ...(0, modular_ts_1.nLength)(curve.n, curve.nBitLength), ...curve, ...{ p: curve.Fp.ORDER }, }); } function createField(order, field, isLE) { if (field) { if (field.ORDER !== order) throw new Error('Field.ORDER must match order: Fp == p, Fn == n'); (0, modular_ts_1.validateField)(field); return field; } else { return (0, modular_ts_1.Field)(order, { isLE }); } } /** Validates CURVE opts and creates fields */ function _createCurveFields(type, CURVE, curveOpts = {}, FpFnLE) { if (FpFnLE === undefined) FpFnLE = type === 'edwards'; if (!CURVE || typeof CURVE !== 'object') throw new Error(`expected valid ${type} CURVE object`); for (const p of ['p', 'n', 'h']) { const val = CURVE[p]; if (!(typeof val === 'bigint' && val > _0n)) throw new Error(`CURVE.${p} must be positive bigint`); } const Fp = createField(CURVE.p, curveOpts.Fp, FpFnLE); const Fn = createField(CURVE.n, curveOpts.Fn, FpFnLE); const _b = type === 'weierstrass' ? 'b' : 'd'; const params = ['Gx', 'Gy', 'a', _b]; for (const p of params) { // @ts-ignore if (!Fp.isValid(CURVE[p])) throw new Error(`CURVE.${p} must be valid field element of CURVE.Fp`); } CURVE = Object.freeze(Object.assign({}, CURVE)); return { CURVE, Fp, Fn }; } //# sourceMappingURL=curve.js.map